这部技术葵花宝典真的很硬核

本文分享了线上应用故障排除的实战经验,包括CPU占用过高、内存溢出、业务问题排查及BOSS统计需求的应对策略,通过具体命令操作,帮助开发者快速定位并解决问题。

【这是一猿小讲的第 35 篇原创分享】

你有没有经历过:一大早就被疯狂的报警炸醒,由于线上应用 CPU 占用率过高 ......


你有没有经历过:刚到公司,板凳还没有捂热,收件箱里却一堆的客服投诉邮件,需要你排查日志定位问题 ...... 


你有没有经历过:下班的钟声即将敲响,但是你还要加班,进行统计应用每秒、每分钟的峰值等各个指标 ,由于 BOSS 要拿这些指标,在明天的技术大会上对外吹牛 ......


你有没有经历过:深夜正在酣眠,值班的运维疯狂给你打 CALL,由于线上应用内存出现了问题 ......

我敢保证上面的场景,大概率你都经历过。讲真,其实无论你是否经历过,今天你都算来着啦。因为我将要结合以往的经历总结,在猿门开坛设法,掏出葵花宝典施展一二。


水滴石穿非一日之功,冰冻三尺非一日之寒,罗马并非一日建成的,经验也并非一坑而促成的,防狼有术,我们先从全局,看一看这部技术宝典(看不清没关系,感觉到很牛掰就行)。

640?wx_fmt=png


这部技术宝典真的很硬核,主要分四大招,见招拆招,让我们一一进行拆解。

第 1 招:线上应用占用 CPU 过高。

640?wx_fmt=png拆~招:

采用 top 命令,找出 CPU 占用最高的进程 PID;	
通过 ps -ef | grep PID 查看对应的应用,看看是谁在作祟;	
采用 jstack -l  PID >> PID.log 获取进程的堆栈信息;	
采用 ps -mp PID -o THREAD,tid,time 拿到占用 CPU 最高的线程 tid;	
采用 printf "%x\n" tid 获取 16 进制的线程 TID;	
采用 grep TID -A20 PID.log 确定是线程哪儿出了问题。

最~后:腿疼医腿,辨症施治,对症下药。找准代码位置,进行调整代码。

 2 招:线上应用内存溢出。

640?wx_fmt=png拆~招:

采用 top 命令,找出应用对应的 PID;	
采用 jmap -heap PID 确认一下分配的内存少不少;	
采用 jmap -histo:live PID | more 找出分析最耗内存的对象【留意占用多少G的对象】;	
采用 ps -efL | grep PID | wc -l 查看进程创建的线程数;	
采用 ll /proc/PID/task | wc -l 也可以查看进程创建的线程数;	
采用 netstat -apn | grep PID | wc -l 查看进程网络连接数。

最~后:腿疼医腿,辨症施治,对症下药。

a. 如果内存分配确实小,适当调整内存;	
b. 对象被频繁创建,且不释放,优化代码;	
c. 不断创建线程或者不断进行网络连接,优化代码。

 3 招:排查业务问题。


640?wx_fmt=png拆~招:

采用 tail -fn 200 log_file 实时查询线上日志;	
找准日志搜所关键字keyWord,例如 orderId、mobileId、reqId 等;	
采用 grep keyWord log_file 查询关键字所在的行的日志;	
采用 grep -C n keyWord log_file 匹配关键字所在行的上下 n 行;	
采用 grep keyWord log_file | wc -l 匹配关键字的的行数有多少。

最~后:根据实际排查日志场景进行日志搜索 tail 、grep 用的最多。

 4 招:BOSS 的统计问题。

640?wx_fmt=png拆~招:

采用 cat log_file 读取日志文件;	
采用 cut 命令截取出日志的时间戳;	
若按照秒统计截取到秒;若按照分钟统计截取到分钟;	
采用 uniq -c 进行去重统计;	
采用 sort -nr 按照第一列的数值大小进行倒序;	
采用 head -1 只显示第一行内容。

最~后:统计问题迎刃而解,那么统计每秒峰值的命令该如何写呢?

例如日志: 

1118 115856 066 - REQID0000000000188 ... ...

命令组合:

SecondPeak=`cat log_file|cut -d, -f1| cut -c 1-11|sort|uniq -c |sort -nr|head -1`

好了,今天的分享接近尾声,不知道你 get 到多少,懂与不懂,都建议你收藏,以备不时之需;如果想让更多人进步,那不妨发扬一下分享的精神,动动你的手指放肆的转发一下。

640?wx_fmt=png

推荐阅读:

玩弄日志归集于手掌之中

傻瓜也能玩转日志归集

程序慢的像蜗牛,我该怎么办?

机器学习如何为业务赋能?

妈妈再也不用担心,我学不会大数据 flink 啦

Java系列爱情故事推荐:

爱情36技之追美妹的技术

爱情36技之暗送秋波的技术

爱情36技之趣味相投

爱情36技之Bug大战

爱情36技之猿门授渔

爱情36技之记忆永存

考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值