自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

一键难忘的博客

就承认一笑倾城一见自难忘,说什么情深似海我却不敢当。如果帮得到你,那我深感荣幸!

  • 博客(1271)
  • 资源 (7)
  • 问答 (4)
  • 收藏
  • 关注

原创 探索OpenNJet—开源项目测评NGINX云原生功能增强有感

OpenNJetOpenNJet是一款面向互联网和云原生应用提供的运行时组态服务程序。它具备环境感知、安全控制、加速优化等能力,并可以利用动态加载机制实现不同的产品形态,如API网关、消息代理、入口/出口控制器、边车、负载均衡和WAF等。同时,OpenNJet还拥有服务网格中东西向通信、透明流量劫持、熔断、遥测与故障注入、链路追踪、蓝绿发布等新功能特性。

2024-05-07 13:32:53 11892 2

原创 腾讯EdgeOne产品测评体验—基于EO新特性与传统CDN的对比以凸显EO绝对优势【以导航站为例】

在本文中,我们对腾讯的EdgeOne产品进行了深入的测评体验,通过与传统CDN的对比,凸显了EdgeOne的绝对优势。文章首先介绍了EdgeOne作为下一代CDN的概念,并详细阐述了其与传统CDN的显著区别,包括更广泛的全球覆盖、更高效的内容分发、更智能的安全防护等特点。站点加速可通过丰富的功能配置 ,如缓存优化,文件优化,网络优化等,帮助我们实现更高效、更稳定的内容分发,提升业务用户的体验满意度,从而增强网站、应用或其他在线服务的竞争力。在第二部分,我们以导航站为例,进行了EdgeOne特性的深度测试。

2024-04-15 12:11:16 26061 82

原创 基于《2023腾讯云容器和函数计算技术实践精选集》—探索腾讯云TKE的Docker容器、Serverless和微服务优势

在Serverless的架构中,用户操作的是服务化的组件,如存储服务、授权服务等,这有助于缩短开发周期,降低开发难度,并避免了由基础设施产生的延迟。前沿的实践案例是案例集的另一大亮点。当开发者从创业阶段过渡到大型企业阶段,原来的 Serverless 模式逐渐给企业的管理、 运维以及财务等带来一系列的挑战,这也是当期 Serverless 很难在大型企业全面应用的根 本原因,为了破解这样的难题,腾讯云工程师从深度分析症结,推出了顺应企业发展需求的技术,打造真正服务于企业的 serverless 平台。

2024-04-01 14:30:04 10814 47

原创 全网最全的幻兽帕鲁服务器搭建教程—阿里云【保姆级/高性价比】

为了让更多玩家能够体验到幻兽帕鲁的魅力,我们特地整理了一份详细的服务器搭建教程,让你在家也能轻松搭建自己的幻兽帕鲁服务器。玩家可以自由选择不同的幻兽,每个幻兽都有独特的技能和属性,玩家需要根据不同的情况选择适合的幻兽。此外,幻兽的养成也很有趣,玩家可以通过喂养、训练等方式提升幻兽的能力,看着自己的幻兽一步步成长,成就感十足。幻兽帕鲁是一款非常有趣的角色扮演游戏,它以独特的幻兽养成系统和丰富的剧情为核心,吸引了大量玩家。到这一步的时候,帕鲁的服务端安装程序已经预置在服务的镜像里了,无需手动复制,非常方便。

2024-02-05 00:02:08 77028 63

原创 基于TableAgent实现IT职位招聘数据分析—以传统机器学习与TableAgent 数据分析方式相对比以凸显TableAgent 特性

在当今这个数据驱动的时代,数据智能分析已经成为了企业决策的关键。而TableAgent,作为一款强大的数据智能分析工具,正逐渐受到业界的关注和青睐。本文将带你深入了解TableAgent,探讨如何利用它玩转数据智能分析,为企业创造更大的价值。TableAgent 本次升级的一大亮点是可以为企业提供私有化部署。Code Interpreter对国内众多企业用户的最大障碍是企业数据因为安全性、合规等种种原因,不能传输到线上的共有服务平台。

2023-12-24 18:54:05 29654 104

原创 基于亚马逊云科技新功能:Amazon SageMaker Canvas无代码机器学习—以构建货物的交付状态检测模型实战为例深度剖析以突显其特性

我以前使用过Amazon SageMaker来训练一些模型,当然都是高度需要代码,是传统的深度学习模型,但是这次的新产品Amazon SageMaker Canvas给我带来了极大的震撼,现在不用代码就可以继续模型训练,这是之前闻所未闻的!

2023-12-14 11:48:14 62182 79

原创 基于Amazon S3 Express One Zone和Amazon SageMaker的图像分类模型实战—深析新旧产品突显Express One Zone在性能上的优势

本文采用了Amazon S3 Express One Zone官网看到推荐使用Amazon S3 Express One Zone搭配Amazon SageMaker 模型训练的测评思路,用基于Amazon S3 Express One Zone和Amazon SageMaker的图像分类实战—以猫狗识别模型为例,并且探索项目采用Amazon S3标准版与Amazon S3 Express One Zone的差距。与大型对象相比,较小的对象可以从较低的存储延迟中获得巨大的优势。

2023-12-14 11:13:01 68796 82

原创 HarmonyOS从基础到实战-高性能华为在线答题元服务

HarmonyOS从基础到实战-高性能华为在线答题元服务在本文中,我们介绍了一个关于在线答题应用的项目,其中包括项目结构和开发计划。项目主要分为主应用的Ability(entryability)、卡片的Ability(Entnyformability)、从云数据库导出的数据类型(Models)以及页面代码文件夹(Pages)等模块。使用了两个重要的配置文件,分别是agconnect-services.json和schema.json,用于连接serverless服务和云端配置信息。

2023-11-21 13:06:23 114757 22

原创 精通AI领域技术实战千例专栏—学习人工智能的指南宝典

精通AI领域技术实战千例专栏—学习人工智能的指南宝典“人工智能是一个非常大的交叉学科,本身就有一个庞大的体系。” 通班的领衔创立者,北大人工智能研究院院长、讲席教授朱松纯介绍说。因此,仅仅把人工智能视为应用领域,课程只集中在某个研究热点上,完全无法满足培养人工智能复合型领军人才的需要:“一个人只有把人工智能六个领域都搞懂了、融会贯通了,你才能说你是人工智能领域的人才或者专家。”

2023-11-12 13:36:09 17127 11

原创 精通可视化技术实战千例专栏教程教程导航帖—学习可视化技术的指南宝典

精通可视化技术实战千例专栏教程教程导航帖—学习可视化技术的指南宝典可视化(Visualization)是利用计算机图形学和图像处理技术,将数据转换zhi成图形或图像在屏幕上显示出来,并进行交互处理的理论、方法和技术。它涉及到计算机图形学、图像处理、计算机视觉、计算机辅助设计等多个领域,成为研究数据表示、数据处理、决策分析等一系列问题的综合技术。目前正在飞度发展的虚拟现实技术也是以图形图像的可视化技术为依托的。

2023-11-10 15:52:13 11088 4

原创 探秘文心千帆:开发者的大模型之旅与应用创新

它强调了遵守法律法规的重要性,提到了设计和实施数据保护措施,强调了对敏感数据的保护还提到了数据访问控制的重要性,强调了建立安全文化的重要性,最后,提到了实施安全审计和监控的重要性。我测试了文心千帆的推理能力。在本文中,我将分享我的使用文心千帆大模型-一站式企业级大模型平台,提供先进的生成式AI生产及应用全流程开发工具链的感受,并探索了一些有趣的应用场景。6.到模型仓库查看,我们有需要的话可以把自己的大模型部署到服务器上,这里消耗资源较大,花费较高就不演示的,有需要的朋友可以直接一键部署使用即可。

2023-07-21 21:22:07 13910

原创 Python中的函数式编程技术介绍与实践

函数式编程是一种编程范式,它将计算视为数学函数的求值,避免了状态变量的使用,强调函数之间的纯粹性和不可变性。在Python中,函数是一等公民,这意味着函数可以像其他数据类型一样被传递、赋值和操作。函数式编程作为一种编程范式,在Python中逐渐得到了广泛的应用。本文旨在深入探讨Python中函数式编程的核心概念、技术特点以及实践应用,并通过丰富的代码示例展示其在实际项目中的价值和应用场景。文章首先介绍了函数式编程的基本概念,强调了不可变性、纯函数和高阶函数等重要特性。

2024-05-27 01:58:06 660 1

原创 使用Python进行大规模数据处理和分析

在本文中,我们深入探讨了如何利用Python进行大规模数据处理和分析。我们首先介绍了Python在这一领域的优势,包括其开源生态系统、并行处理能力和数据可视化能力。随后,我们通过具体的代码示例展示了如何处理不同类型的大规模数据,包括结构化数据、文本数据和图像数据,并使用Python进行统计分析、情感分析和图像分类等任务。最后,我们还介绍了如何利用分布式计算框架,如PySpark,来处理更大规模的数据集。Python拥有丰富的开源生态系统,提供了众多数据处理和分析工具,能够满足各种需求。

2024-05-27 01:53:37 590

原创 从零开始的HarmonyOS Next开发指南:打造HarmonyOS NEXT元服务

DevEco Studio 4.0是一个集成开发环境(IDE),专门为开发者提供一站式的HarmonyOS应用和服务开发支持。以下是DevEco Studio 4.0的一些主要特点:高效智能代码编辑:支持多种语言,如ArkTS、JavaScript、C/C++等,提供代码高亮、智能补齐、错误检查、自动跳转、格式化、查找等功能,以提升代码编写的效率。低代码可视化开发:拥有丰富的UI界面编辑能力,支持自由拖拽组件和可视化数据绑定,能够快速预览效果,所见即所得。

2024-05-26 20:50:11 297

原创 Python中的安全编码技术与防御策略

在当今数字化时代,安全性已经成为任何软件开发项目不可或缺的一部分。Python作为一种流行的编程语言,在安全编码方面也有着丰富的工具和技术可供选择。通过采取适当的安全编码技术和防御策略,结合团队的合作和持续改进,开发人员可以更好地保护他们的应用程序和用户数据,确保其安全可靠。让我们共同努力,为构建一个更加安全的网络空间而不懈奋斗!

2024-05-26 18:45:36 847 1

原创 Python异步编程指南:应用场景、技巧和性能优化

在传统的同步编程中,代码按照顺序逐行执行,一行执行完毕后再执行下一行。这种模式在处理IO密集型任务时效率较低,因为大部分时间都花在等待IO操作完成上。而异步编程则允许代码在执行IO操作时不阻塞程序的其他部分,从而提高了程序的并发性和性能。在Python中,异步编程通过协程(coroutine)和事件循环(event loop)来实现。协程是一种轻量级的线程,可以在IO操作时暂停执行,而事件循环则负责调度和管理协程的执行。在Python中,异步编程是处理高并发和IO密集型任务的重要方式之一。

2024-05-26 15:46:37 667

原创 提升Python Web应用性能的10个关键技巧

构建高性能的Web应用程序是一个综合性的任务,需要综合考虑多个方面的因素。通过选择合适的框架、使用异步编程、优化数据库访问、使用缓存和异步IO库,以及监控和调优,我们可以构建出性能优异的Python Web应用程序。然而,性能优化不是一劳永逸的任务,而是一个持续的过程。持续监控应用程序的性能,并根据实际情况进行调优,是保持应用程序高性能的关键。希望本文对你构建高性能的Python Web应用程序有所启发,祝你的项目顺利!

2024-05-26 15:39:33 464

原创 Python中的并发编程技术与最佳实践

在本文中,我们深入探讨了Python中的并发编程技术与最佳实践。我们首先介绍了多线程、多进程和异步编程这三种常见的并发编程技术,并提供了相应的代码实例来演示它们的用法。对于多线程,我们使用了Python标准库中的threading模块,展示了如何创建和启动线程,以及如何避免线程间的竞态条件和死锁等问题。对于多进程,我们利用了模块,展示了如何创建和启动进程,以及如何使用进程池来管理并发任务,避免资源竞争和性能瓶颈。对于异步编程,我们使用了asyncio和aiohttp。

2024-05-25 12:24:42 1192 1

原创 使用Python进行异步微服务架构的设计与实现

微服务架构已经成为现代软件开发中的主流趋势,它将一个大型应用程序拆分为一系列小型、独立的服务,每个服务都有自己的特定功能。而异步微服务架构则更进一步,通过异步通信方式提高了系统的性能和可扩展性。本文将介绍如何使用Python构建异步微服务架构,并提供代码实例进行演示。在本文中,我们深入探讨了使用Python构建异步微服务架构的设计和实现。我们从技术选型开始,选择了Python 3.7+作为主要编程语言,并采用了FastAPI、Celery和Redis等库和工具来构建异步微服务系统。

2024-05-24 17:42:34 2134 2

原创 使用Python进行自动化测试—Mock与单元测试的结合

单元测试是自动化测试的基础,它用于验证代码的最小单元——函数或方法是否按照预期工作。在Python中,我们通常使用unittest或pytest等测试框架来编写和执行单元测试。# 示例:使用unittest编写的单元测试Mock是一种用于模拟对象行为的技术,它可以替代真实的对象,并模拟其在测试中的行为。Mock通常用于解决测试过程中的依赖性问题,比如调用外部服务或依赖其他模块的情况。在Python中,我们可以使用模块来创建和管理Mock对象。# 示例:使用unittest.mock创建Mock对象。

2024-05-24 17:41:27 1374 1

原创 使用Python进行数据备份【数据备份指南大全】

利用Python进行数据备份与恢复是一种常见的做法。对于数据库,你可以使用Python中的数据库连接库(如sqlite3、SQLAlchemy等)连接到数据库,然后执行备份操作,将数据库的内容保存到一个备份文件中。对于文件系统,你可以使用Python的os和shutil模块来复制文件和目录,实现文件系统的备份。备份时,通常需要考虑备份的频率、存储位置、数据压缩和加密等问题。在恢复数据时,你可以编写Python脚本来自动化恢复过程,以便在需要时快速恢复数据。定期测试备份数据的完整性和可恢复性也是很重要的。

2024-05-24 17:40:54 441

原创 构建Python中的分布式爬虫系统Scrapy与分布式任务队列的结合

Scrapy 是一个强大的 Python 爬虫框架,它提供了强大的抓取能力和灵活的数据提取功能。通过 Scrapy,我们可以轻松地定义爬虫的流程、规则和数据处理方式,从而快速地构建一个高效的单机爬虫系统。分布式任务队列是一种用于分发任务并协调多个节点之间工作的系统。它通常由任务生产者、任务队列和多个任务消费者组成。任务生产者负责生成任务并将其放入队列中,而任务消费者则从队列中获取任务并执行。# 在这里定义数据提取逻辑passyield {

2024-05-24 17:39:50 1923

原创 Django中的权限管理与用户身份验证系统的设计

在某些情况下,您可能需要定义自己的自定义权限,并在应用程序中使用它们。# 创建自定义权限在某些情况下,您可能需要自定义用户模型以满足特定需求,比如添加额外的字段或改变默认的身份验证行为。# 添加自定义字段在使用自定义用户模型之前,需要将其注册到Django应用程序中。一旦定义并注册了自定义用户模型,您可以像使用内置的User模型一样使用它。# 创建用户# 身份验证在这篇文章中,我们深入探讨了在Django中构建安全可靠的Web应用所涉及的关键方面。

2024-05-24 17:39:19 378

原创 618火热来袭:提升你的代码力,必读编程书单推荐

●《深入理解Java虚拟机》(第3版):周志明老师编著,深入剖析Java虚拟机的工作原理,让你对Java性能优化有更深的理解。●《Java核心技术 卷I:开发基础》(原书第12版):深入浅出地介绍了Java编程的基础知识,适合初学者和有经验的开发者。●《Java核心技术 卷II:高级特性》(原书第12版):深入探讨Java的高级特性,让你的Java技能更上一层楼。●《Java并发编程的艺术》第2版:深入探讨Java并发编程的复杂性,帮助你掌握多线程编程的精髓。618大促来袭,是时候为你的书架添置新成员了!

2024-05-23 22:12:07 6844

原创 深入探讨Node-RED物联网应用开发技术【文末送书】

本书讲解了物联网工程的系统架构、Node-RED官方的重要扩展节点、Node-RED的团队开发模式、自定义节点开发,以及如何将Node-RED嵌入到其他系统中等Node-RED的高级知识。《Node-RED物联网应用开发技术详解》共 8 章,从 Node-RED 背景、环境准备、安装开始,详细讲解了 Node-RED 编辑器使用以及 Node-RED 配置细节、Node-RED 的核心节点,最后通过完整的物联网实战案例介绍了物联网应用的开发流程。在Node-RED中,节点之间通过消息进行通信和数据传递。

2024-05-23 18:15:39 4807 2

原创 HTML5+CSS3+JavaScript从入门到精通【文末送书】

第二,对图书内容进行了深度更新、优化,如优化了内容布置,弥补了讲解疏漏,将开发环境和工具更新为新版本,增加了对新技术点的剖析,将项目替换为更能体现当今IT开发现状的热门项目等,使其更与时俱进,更适合读者学习;全书共计有205个应用实例,141个编程训练,81个综合练习,1个项目案例,为初学者打造“学习+训练”的强化实战学习环境。读者对象:初学编程的自学者,编程爱好者,大中专院校的老师和学生,相关培训机构的老师和学员,进行毕业设计的学生,初、中级程序开发人员,程序测试及维护人员,参加实习的“菜鸟”程序员。

2024-05-23 16:52:46 4080 1

原创 拓扑排序算法的实现与应用场景

拓扑排序算法是一种解决有向无环图(DAG)排序问题的有效工具,其将图中的顶点以线性顺序排列,保证了依赖关系的正确顺序。本文介绍了拓扑排序算法的原理和实现方法,并探讨了其在不同领域的广泛应用场景。首先,我们了解了拓扑排序算法的基本原理,包括如何利用入度和队列来确定顶点的排序顺序。然后,我们通过 Python 示例代码演示了拓扑排序算法的实现过程,并验证了其在示例图中的正确性。接着,我们探讨了拓扑排序算法在实际应用中的多种场景。

2024-05-23 16:15:00 770

原创 Python中的多线程与多进程编程:线程池与进程池的应用

线程池是一种预先创建一定数量的线程并维护这些线程,以便在需要时重复使用它们的技术。线程池可以减少线程创建和销毁的开销,提高线程的重复利用率。在Python中,可以使用来创建线程池。本文介绍了在Python中使用线程池和进程池来实现并发编程的方法,并提供了相应的代码示例。首先,我们讨论了多线程和多进程的概念及其在并发编程中的应用场景。然后,我们深入探讨了线程池和进程池的工作原理以及它们之间的性能比较。在代码示例部分,我们演示了如何使用线程池和进程池来执行多个任务,其中包括下载多个文件的示例。

2024-05-23 16:15:00 1038

原创 Django中的社交登录集成:OAuth与第三方认证的实践

接着,我们探讨了用户管理和个性化设置的重要性,并提供了创建个人资料页面、配置个人资料链接以及定制用户模型的方法。最后,我们提出了测试与调试的策略,如单元测试、集成测试、调试工具和日志调试,并强调了用户反馈与改进的重要性。通过不断地测试、调试、收集反馈和改进,我们可以确保社交登录功能在生产环境中稳定可靠,与用户的需求和期望保持一致,为用户提供更好的登录体验。通过允许用户使用他们在其他网站上拥有的账户来登录您的应用程序,社交登录不仅提供了方便,还可以增加用户体验和用户参与度。我们详细讨论了安装和配置。

2024-05-23 15:18:50 898

原创 Dijkstra算法最短路径搜索的经典算法

原理和核心思想:Dijkstra算法是一种解决单源最短路径问题的经典算法。其核心思想是通过贪心策略逐步确定从源节点到所有其他节点的最短路径,直到所有节点都被覆盖。算法实现:Dijkstra算法的实现包括初始化距离、使用优先队列动态选择下一个要处理的节点、更新距离等步骤。通过合理的数据结构和算法设计,可以有效地计算出最短路径。适用条件:Dijkstra算法适用于处理非负权重图的最短路径问题。它在网络路由、地图路线规划、资源分配等领域有广泛的应用。复杂性和局限性。

2024-05-23 13:45:00 917

原创 Django中的缓存系统:Redis与Memcached的比较

在某些情况下,可能需要实现自定义的缓存后端,以满足特定的需求或集成特定的存储系统。# 自定义缓存后端示例# 初始化自定义缓存后端# 实现添加缓存数据的逻辑# 实现获取缓存数据的逻辑# 实现设置缓存数据的逻辑# 实现删除缓存数据的逻辑# 在settings.py中配置使用自定义缓存后端CACHES = {在本文中,我们深入探讨了在Django应用程序中使用Redis和Memcached作为缓存系统的相关内容。

2024-05-23 12:07:43 1062

原创 使用Python进行自动化测试Behave与BDD的结合

BDD是一种软件开发方法论,它强调通过与利益相关者(如客户、产品经理、开发人员)合作来编写可理解的、自然语言的规范。BDD的核心理念是通过定义系统行为的规范来推动软件开发,并确保开发的软件满足这些规范。Behave是一个用于Python的BDD测试框架,它允许开发人员编写易于理解的行为规范,并将这些规范转化为可执行的测试用例。Behave的语法简单直观,使用Gherkin语言编写测试场景,例如givenwhenthen等关键词,使得非技术人员也能够理解测试用例。

2024-05-23 12:05:31 604

原创 28A-100

28A-100

2024-05-23 12:03:00 501

原创 28A-100

28A-100

2024-05-23 12:01:16 670

原创 深入探讨红黑树平衡性与高效性的完美结合

总的来说,红黑树作为一种自平衡二叉查找树,在算法设计和实现中扮演着重要的角色。它具有良好的平衡性和高效性,能够保持树的平衡性,并且在插入、删除和查找等操作上具有较低的时间复杂度。红黑树的优点包括平衡性、高效性、易于实现和广泛应用,使得它成为了许多算法和数据结构中的重要组成部分。然而,红黑树也存在一些缺点,如复杂度较高、空间开销较大和不适合频繁变动的数据集等。综合考虑,红黑树在大多数情况下仍然是一种优秀的选择,但在特定情况下需要根据实际需求选择合适的数据结构。

2024-05-23 10:15:00 1234

原创 二叉搜索树的构建与遍历算法

二叉搜索树(Binary Search Tree,BST)是一种常见的数据结构,它具有良好的查找、插入和删除性能。左子树中所有节点的键值小于根节点的键值。右子树中所有节点的键值大于根节点的键值。左右子树本身也是二叉搜索树。本文深入探讨了二叉搜索树(BST)的构建、遍历、删除、验证和层次遍历等关键操作。首先介绍了二叉搜索树的定义和性质,包括节点值的大小关系和子树的结构。然后,详细讨论了二叉搜索树的构建方法,包括递归和迭代两种方式。

2024-05-23 08:00:00 607

原创 哈希表的原理及其在实际中的应用

哈希表是一种数据结构,用于存储键值对(key-value pairs)。它通过哈希函数将键映射到表中的一个位置,从而实现高效的数据访问。哈希表的特点在于,通过哈希函数计算出的位置是固定的,因此可以在常量时间内(O(1))查找、插入和删除元素。哈希表作为一种重要的数据结构,在实际应用中发挥着关键作用。本文深入探讨了哈希表的原理、哈希函数、哈希冲突处理以及实际应用场景。我们了解到,哈希表通过哈希函数将键映射到固定位置,实现了快速的数据存储和查询,具有常量时间复杂度的优势。

2024-05-23 07:15:00 850

原创 Python数据可视化的最佳实践(实战)

除了使用现有的可视化工具和库外,还可以通过编程自定义可视化,以满足特定需求或实现创新的效果。Python提供了丰富的绘图功能和图形库,可以通过编写代码创建各种复杂的可视化图表。绘制定制化图表:通过Python的绘图库,如Matplotlib和Plotly,可以编写代码创建定制化的图表,包括3D图、极坐标图、雷达图等,以满足特定的需求。开发交互式应用:使用诸如Bokeh和Dash等工具,可以开发交互式的数据可视化应用程序,使用户能够通过图形界面与数据进行交互,并动态地改变可视化效果。

2024-05-23 01:19:40 275

原创 Python自动化部署与持续集成(构建高效软件交付流程)

自动化部署是指通过自动化的方式将软件应用程序从开发环境部署到生产环境,以减少手动操作和人为错误,提高部署的效率和稳定性。而持续集成是一种软件开发实践,通过将代码频繁地集成到共享存储库中,并自动运行测试,以确保代码的质量和稳定性。在Python领域的自动化部署与持续集成技术中,我们介绍了多个关键概念、工具和实践。首先,我们了解了自动化部署和持续集成的重要性,以及它们如何提高软件开发的效率和质量。

2024-05-23 01:11:29 910

原创 通过Python的地理可视化库进行地图动画的制作方法

通过自定义地图的样式和图层,可以呈现出更具个性化的地图动画效果。本文介绍了如何利用Python的地理可视化库制作地图动画。首先,我们通过导入所需的库,并创建地图对象来准备工作。然后,我们使用Basemap库来实现地图动画的制作,通过定义更新函数和创建动画对象来展示地理数据的时空变化。我们还介绍了一些地图动画的进阶应用,包括轨迹动画、热力图动画以及自定义地图样式的应用。接着,我们讨论了地图动画的数据来源和实例,包括气象数据、经济数据和疫情数据,并提供了相应的示例代码。

2024-05-23 00:53:33 765

dlib-19.24.2-cp312-cp312-win-amd64.zip

py3.12特供的dlib-19.24.2-cp312-cp312-win_amd64.zip 记得解压后直接安装。

2024-03-10

Java-俩数的和.zip

“Java - 俩数的和.zip” 是一个压缩文件,其中很可能包含了用Java语言编写的实现两个数相加的简单程序。这个文件可能包含了Java源代码文件(.java),以及可能的编译后的类文件(.class),如果源代码被编译过的话。此外,可能还包含了一些文档或注释,以解释程序的用法和功能。 适用人群: Java初学者:对于刚开始学习Java编程的人来说,这个资源可以作为一个简单的示例,帮助他们理解如何编写基本的Java程序。 学生和教育工作者:在学校或自学环境中,这个资源可以作为教学材料,用于演示如何执行基本的数学运算。 开发者:即使对于有经验的开发者,这个简单的示例也可能用于快速测试环境或作为更复杂程序的组成部分。

2024-02-07

python-LRU缓存.zip

“Python—LRU缓存.zip”是一个压缩文件,其中包含了使用Python实现的最近最少使用(Least Recently Used, LRU)缓存算法的代码和相关文档。LRU缓存算法是一种常用的缓存淘汰策略,它根据数据项最近被使用的时间来决定哪些数据项应该从缓存中移除,以确保缓存中始终存放着最近最可能被使用的数据项。这个压缩文件可能包括LRU缓存的实现代码、测试样例、使用说明和可能的性能优化策略。 适用人群: Python开发者:对于想要了解或实现LRU缓存算法的Python开发者来说,这个资源是一个很好的学习资料。 数据结构和算法爱好者:LRU缓存算法是数据结构和算法领域的一个经典问题,对于喜欢挑战和学习数据结构和算法的人来说,这个资源非常有用。 缓存系统设计者:LRU缓存算法在缓存系统设计中有着广泛的应用,这个资源可以为缓存系统设计者提供实现和优化缓存策略的思路。

2024-02-07

某公司大数据大屏展示模版.zip

订阅专栏后源码免费,项目剖析详解:https://shangjinzhu.blog.csdn.net/article/details/136042003 “某公司大数据大屏展示模版.zip”是一个集合了多种大数据可视化大屏展示设计的压缩文件。它旨在为使用者提供一个快速搭建、高效展示大数据的平台。该模版集合了现代设计的最佳实践,包含了丰富的图表、动画效果和交互功能,旨在提供直观、动态的数据展示。 这个模版包括但不限于以下元素: 多种风格的大屏布局设计,适应不同的展示需求。 丰富的数据可视化组件,如实时更新的图表、动态数据条等。 交互功能,如数据筛选、图表联动等,增强用户体验。 易于定制的样式和配色方案,以符合公司或项目的品牌形象。

2024-02-07

跨年炫酷烟花代码-动态-直接运行.zip

这是一个关于跨年炫酷烟花的动态代码,可以直接运行。 资源介绍: 跨年炫酷烟花代码_动态-直接运行.zip 是一个压缩文件,包含了可以直接运行的跨年炫酷烟花代码。该代码使用了Python语言和pygame库,可以实现动态的烟花效果,非常适合用于庆祝跨年等场合。 内容概要: 该压缩文件可能包含以下内容: Python脚本文件:包含了实现烟花效果的完整Python脚本,可以直接运行。 pygame库:包含了pygame库的相关文件,用于实现烟花的动态效果。 运行说明:提供了如何运行代码的说明文档,包括所需的运行环境和步骤。 适用人群: 该资源适用于Python爱好者和想要制作动态烟花效果的人。通过阅读该资源,你可以学习如何使用Python和pygame库来制作动态烟花效果,并可以在自己的电脑上运行代码,享受跨年的喜悦。 场景目标: 制作动态烟花效果:该资源可以帮助你制作出动态的烟花效果,非常适合用于庆祝跨年等场合。 学习Python和pygame库:通过阅读该资源,你可以学习如何使用Python和pygame库来制作动态效果,提高自己的编程技能。

2024-01-12

字符串-Java解题分析-学习资料.zip

字符串-Java解题分析-学习资料.zip 是一个关于Java中字符串处理的解题分析和学习资料的压缩文件。该资源主要涵盖了Java中字符串的基本操作、常见算法和问题解析,旨在帮助开发者深入理解字符串在Java中的运用,提高解决相关问题的能力。 该压缩文件包含以下内容: 字符串基础:详细介绍了Java中字符串的创建、拼接、比较、搜索等基本操作,以及常用的字符串类和API。 算法解析:深入解析了常见的字符串算法问题,如最长公共子串、字符串排序、子串查找等,并提供了解题思路和代码示例。 实战案例:通过具体的实战案例,演示了如何运用字符串处理技术解决实际问题,如文本处理、密码破解、数据压缩等。 学习资料:提供了与字符串处理相关的参考资料、书籍和在线课程,方便开发者进一步扩展学习。 适用人群: 该资源适用于Java开发者、学生以及对字符串处理技术感兴趣的任何人。无论是初学者还是有一定经验的开发者,都可以从中获取有关Java字符串处理的实用知识和技能。 场景目标: 技能提升:帮助开发者提升解决字符串相关问题的能力,提高编程水平。

2024-01-06

python领域-安全帽识别.zip

这是一个Python领域的项目,关于安全帽识别的代码和相关文件。安全帽识别在许多行业和场景中都有实际应用,例如建筑工地、工厂、煤矿等,以确保工作人员佩戴安全帽以保障其生命安全。 该zip文件可能包含以下内容: 代码文件:用于实现安全帽识别的Python代码,可能使用深度学习框架(如TensorFlow或PyTorch)进行模型训练和推理。 数据集:用于训练和验证模型的图像数据集,包括佩戴安全帽和不佩戴安全帽的不同场景和角度的图像。 预训练模型:经过训练的模型文件,可以直接用于安全帽识别任务。 文档和注释:项目文档、注释和说明,帮助理解代码和模型的原理、实现细节和使用方法。 适用人群: Python开发人员:具备Python编程基础,熟悉深度学习框架和图像处理库(如OpenCV)的开发人员。 机器学习工程师:具备机器学习和深度学习经验,能够进行模型训练、优化和应用。 安全管理人员:在工业生产、施工现场等需要监控员工是否佩戴安全帽的场景下,可以使用该代码进行实时监控和预警。 场景目标: 安全监控:实时检测视频流中工作人员是否佩戴安全帽,并发出警报或提示信息。 数据分析:对历史数据进

2024-01-06

ACM必会-杨氏矩阵题解分析.zip

ACM必会-杨氏矩阵题解分析.zip 是一个压缩文件,包含了关于杨氏矩阵问题的详细题解和代码实现。该资源旨在帮助参加ACM竞赛的选手更好地理解杨氏矩阵问题,并提供相应的解决方案和代码示例。 内容概要: 该压缩文件可能包含以下内容: 问题描述:详细解释了杨氏矩阵问题的背景、要求和解题思路。 算法分析:对杨氏矩阵问题进行了深入的算法分析和推理,为解决问题提供了理论支持。 代码实现:提供了完整的代码实现,包括主函数和辅助函数,展示了如何用编程语言解决杨氏矩阵问题。 测试样例:包含了多组测试样例,并展示了如何使用代码实现来验证问题的解决方案。 适用人群: 该资源适用于参加ACM竞赛的选手,特别是那些对杨氏矩阵问题感兴趣的选手。通过阅读该资源,选手们可以深入理解问题本质,掌握解题技巧,提高竞赛成绩。 场景目标: 理解问题:帮助选手们深入理解杨氏矩阵问题的本质和要求,明确解题思路。 掌握技巧:通过算法分析和代码实现,使选手们掌握解决杨氏矩阵问题的技巧和方法。 提高成绩:提供多组测试样例,使选手们能够验证自己的解决方案,提高解决问题的准确性和效率,从而在竞赛中取得更好的成绩

2024-01-06

蓝桥杯-蛇形矩阵题解.zip

蓝桥杯—蛇形矩阵题解.zip 是一个压缩文件,包含了关于蛇形矩阵问题的详细题解和代码实现。该资源旨在帮助参加蓝桥杯竞赛的选手更好地理解蛇形矩阵问题,并提供相应的解决方案和代码示例。 内容概要: 该压缩文件可能包含以下内容: 问题描述:详细解释了蛇形矩阵问题的背景、要求和解题思路。 算法分析:对蛇形矩阵问题进行了深入的算法分析和推理,为解决问题提供了理论支持。 代码实现:提供了完整的代码实现,包括主函数和辅助函数,展示了如何用编程语言解决蛇形矩阵问题。 测试样例:包含了多组测试样例,并展示了如何使用代码实现来验证问题的解决方案。 适用人群: 该资源适用于参加蓝桥杯竞赛的选手,特别是那些对蛇形矩阵问题感兴趣的选手。通过阅读该资源,选手们可以深入理解问题本质,掌握解题技巧,提高竞赛成绩。 场景目标: 理解问题:帮助选手们深入理解蛇形矩阵问题的本质和要求,明确解题思路。 掌握技巧:通过算法分析和代码实现,使选手们掌握解决蛇形矩阵问题的技巧和方法。 提高成绩:提供多组测试样例,使选手们能够验证自己的解决方案,提高解决问题的准确性和效率,从而在竞赛中取得更好的成绩。

2024-01-06

一个普通的模型备赛资料.zip

资源介绍: 一个普通的模型备赛资料.zip 是一个压缩文件,包含了用于模型竞赛的参考和备赛资料。该资源可能涵盖了各种领域和主题,旨在帮助参赛者更好地准备和了解竞赛的相关要求和知识点。 内容概要: 该压缩文件可能包含以下内容: 算法和数据结构:提供了一些常用的算法和数据结构,用于解决模型竞赛中的问题。 数学基础:包含了数学相关的基础知识和公式,如概率统计、线性代数和微积分等。 问题集和题目解析:提供了一些经典的问题集和题目解析,帮助参赛者熟悉竞赛题型和提高解题能力。 实战经验和技巧:分享了一些参赛者的实战经验和技巧,包括如何准备、如何解题以及如何优化模型等。 适用人群: 该资源适用于参加各类模型竞赛的参赛者,特别是那些希望提高自己的算法和编程能力的人。无论是初学者还是有一定经验的参赛者,都可以从该资源中获得有用的信息和帮助。 场景目标: 准备竞赛:该资源可以帮助参赛者更好地准备竞赛,提高解题能力和技巧。 学习和探索:通过阅读该资源,参赛者可以学习和探索新的算法和知识点,提高自己的算法和编程能力。 参考和借鉴:在竞赛过程中,参赛者可以随时参考和借鉴该资源中的信息和经验,帮助自

2024-01-06

炫酷烟花+背景音乐-H5代码实现-可直接运行完整源码.zip

炫酷烟花+背景音乐-H5代码实现_可直接运行【完整源码】.zip 烟花仿真是一项具有创意和娱乐性质的项目,旨在通过H5技术实现炫酷的烟花效果,并结合背景音乐营造出一个生动、愉悦的视听体验。该项目的目标是通过Web浏览器即时展现精美的烟花效果,使用户能够在任何设备上欣赏到令人惊叹的视觉和听觉盛宴。

2024-01-06

【计算机设计大赛作品】豆瓣电影数据挖掘可视化-信息可视化赛道获奖项目-完整源码.zip

订阅专栏后源码免费,项目剖析详解:https://shangjinzhu.blog.csdn.net/article/details/135331137 资源介绍: 【计算机设计大赛作品】豆瓣电影数据挖掘可视化—信息可视化赛道获奖项目_完整源码.zip 是一个计算机设计大赛的获奖作品,该项目以豆瓣电影数据为基础,通过数据挖掘和可视化技术,展示了电影的相关信息和趋势。该资源包含了完整的项目源码和相关文件,可供开发者参考和学习。 内容概要: 数据挖掘:该项目使用了数据挖掘技术,对豆瓣电影数据进行了深入分析,提取了电影的相关信息和特征。 可视化展示:通过信息可视化技术,将电影数据以直观、生动的方式呈现出来,帮助用户更好地理解数据和趋势。 交互功能:该项目还实现了多种交互功能,如筛选、排序、动态展示等,使用户能够更加方便地探索电影数据。 适用人群: 数据挖掘和可视化爱好者:对于对数据挖掘和可视化技术感兴趣的开发者来说,该项目提供了一个完整的实现案例,可供学习和参考。 电影爱好者:对于喜欢电影的人,该项目可以帮助他们更好地了解电影的相关信息和趋势,提供更加全面的观影指南。

2024-01-02

计算机网的项目.zip

计算机网的项目.zip

2023-12-29

Z字变换vector转向.cpp

Z字变换vector转向.cpp

2023-12-29

重排num中的各位数字,使其值最小化且不含任何前导零 .java

重排num中的各位数字,使其值最小化且不含任何前导零。.java

2023-12-27

Python版春节&元旦快乐代码(烟花+龙宝+声音).zip

Python版春节&元旦快乐代码(烟花+龙宝+声音).zip 是一个Python项目,旨在通过烟花、龙宝和声音的形式为春节和元旦送上祝福。该项目包括完整的代码和必要的文件,用户可以直接运行或进行二次开发。 内容概要: 烟花效果:通过Python的图形库,实现烟花绽放的效果,为节日增添喜庆氛围。 龙宝动画:展示一个可爱的龙宝形象,在屏幕上进行动画表演,象征着好运和吉祥。 声音祝福:播放一段喜庆的背景音乐,以及祝福的话语,为用户送上温馨的祝福。 适用人群: Python爱好者:对于喜欢Python编程的爱好者来说,该项目提供了一个有趣的应用场景,可以学习图形库的使用和动画效果的实现。 创意开发者:对于具有创意和想象力的开发者来说,该项目可以作为一个起点,进一步开发更多有趣的功能和效果。 节日祝福发送者:对于想要通过技术手段为亲朋好友送上节日祝福的人,该项目提供了一个简单易行的方式。 场景目标: 节日祝福:在春节和元旦期间,为用户送上温馨、有趣的祝福,增加节日氛围。 技术展示:对于想要展示自己技术能力的开发者来说,该项目可以作为一个展示作品,体现编程和创意的结合。

2023-12-24

圣诞贺卡-前端三件套实现.html

资源介绍: 圣诞贺卡—前端三件套实现.html 是一个包含前端三件套(HTML、CSS、JavaScript)实现的圣诞贺卡资源的HTML文件。该资源旨在帮助开发者学习如何使用前端技术制作圣诞贺卡,并提供了一个简单的示例,以供参考和学习。 内容概要: HTML结构:该资源包含一个简单的HTML结构,用于构建圣诞贺卡的页面布局。 CSS样式:通过CSS样式,开发者可以自定义贺卡的外观和样式,包括颜色、字体、背景等。 JavaScript交互:JavaScript可以实现贺卡中的交互效果,如点击按钮切换贺卡背景等。 适用人群: 前端开发者:对于想要学习如何使用HTML、CSS、JavaScript制作圣诞贺卡的前端开发者来说,该资源是一个很好的学习资料。 初学者:对于刚刚接触前端技术的新手来说,该资源可以帮助他们了解如何使用前端技术制作简单的网页应用。 爱好者:对于喜欢制作圣诞贺卡的人来说,该资源提供了一个实用的示例,可以参考和学习。 场景目标: 学习前端技术:通过该资源,开发者可以学习如何使用HTML、CSS、JavaScript制作圣诞贺卡,掌握前端技术的基本应用。 制作圣诞

2023-12-20

动物状况分类数据集.csv

“动物状况分类数据集”在动物健康评估领域提出了独特而复杂的数据挑战。该数据集包含从鸟类到哺乳动物等多种动物物种,可以开发预测模型,根据五种不同的症状来确定动物的状况是否危险。该数据集的多样性为创建超越分类学界限的分类系统打开了大门,使其对于对动物福利和野生动物保护感兴趣的人们特别有价值。然而,其手动收集过程引入了潜在的错误来源,包括拼写错误和症状表示的变化。这需要细致的数据清理工作。 数据.csv AnimalName:包含动物种类。比如狗、猫等 症状1-5:包含症状 危险:包含情况是否危险。

2023-12-18

【计算机设计大赛作品】VR项目-中国古字贾湖刻字案例剖析-完整源码.zip

订阅专栏后源码免费,项目剖析详解:https://shangjinzhu.blog.csdn.net/article/details/135045547 【计算机设计大赛作品】VR项目-中国古字贾湖刻字案例剖析-完整源码.zip 是一个计算机设计大赛的作品集,包含了完整的VR项目源码和相关文件。这个项目以中国古字贾湖刻字为案例,通过VR技术展示其独特魅力和历史价值。 内容概要: VR项目源码:该资源包含了完整的VR项目源码,包括场景建模、交互设计、动画效果等。开发者可以通过阅读和理解源码,深入了解VR项目的实现过程和技术细节。 贾湖刻字案例:该项目以中国古字贾湖刻字为案例,通过VR技术展示了贾湖刻字的独特魅力和历史价值。开发者可以通过该项目了解贾湖刻字的历史背景、文化内涵和艺术价值。 相关文件:该资源还包含了一些与项目相关的文件,如场景模型、纹理贴图、音效等。这些文件对于项目的完整性和效果展示具有重要意义。 适用人群: VR技术爱好者:对于喜欢探索VR技术的开发者来说,该资源是一个很好的学习资料。通过阅读和理解源码,他们可以深入了解VR技术的实现过程和技术细节。

2023-12-17

【计算机设计大赛作品源码】诗意千年-唐朝诗人群像的数字展现-完整源码.zip

订阅专栏后源码免费,项目剖析详解:https://shangjinzhu.blog.csdn.net/article/details/134985069 资源介绍: 【计算机设计大赛作品源码】诗意千年—唐朝诗人群像的数字展现_完整源码.zip 是一个包含“诗意千年—唐朝诗人群像的数字展现”项目完整源码的压缩文件。该项目旨在通过数字技术,将唐朝诗人及其作品以一种生动、直观的方式呈现给观众,让人们更加深入地了解唐朝诗人群像和他们的创作历程。 内容概要: 项目背景:该项目以唐朝诗人为背景,通过对诗人及其作品的收集、整理和分析,利用数字技术,将唐朝诗人群像以一种生动、直观的方式呈现给观众。 数据来源:该项目采用了多种数据来源,包括诗人传记、诗歌作品、历史文献等,以确保数据的准确性和可靠性。 数字展现:该项目通过数字技术,如虚拟现实、增强现实等,将诗人及其作品以一种生动、直观的方式呈现给观众,让人们更加深入地了解唐朝诗人群像和他们的创作历程。 适用人群: 该资源适用于以下人群: 计算机设计大赛参赛者:该项目可以作为参赛者的参考项目,帮助参赛者了解数字技术在文化传承领域的应用和实现方法。

2023-12-14

【计算机设计大赛】冬残奥会可视化系统-完整源码.zip

订阅专栏后源码免费,项目剖析详解:https://shangjinzhu.blog.csdn.net/article/details/134969735 资源介绍: 【计算机设计大赛】冬残奥会可视化系统_完整源码.zip 是一个包含冬残奥会可视化系统完整源码的压缩文件。该项目旨在通过信息可视化的方式,展示冬残奥会的比赛数据、运动员信息、场馆数据等内容,为观众提供更加直观、生动的观赛体验。 内容概要: 项目背景:该项目以冬残奥会为背景,通过对比赛数据、运动员信息、场馆数据等进行收集、整理和分析,利用信息可视化的技术手段,展示冬残奥会的各项数据和信息。 数据来源:该项目采用了多种数据来源,包括比赛数据、运动员信息、场馆数据等,以确保数据的准确性和可靠性。 可视化展示:该项目通过多种可视化手段,如地图、图表、动画等,将数据以直观、生动的方式展示出来,便于观众理解和关注。 适用人群: 该资源适用于以下人群: 计算机设计大赛参赛者:该项目可以作为参赛者的参考项目,帮助参赛者了解信息可视化技术在体育赛事领域的应用和实现方法。

2023-12-13

【中国大学生计算机设计大赛信息可视化赛道】获奖项目深入剖析-脱贫攻坚战下贫困地区的发展趋势与成绩数据可视化设计-完整源码.zip

项目剖析详解:https://shangjinzhu.blog.csdn.net/article/details/134967916 订阅专栏后源码免费。 资源介绍: 【中国大学生计算机设计大赛信息可视化赛道】获奖项目深入剖析—脱贫攻坚战下贫困地区的发展趋势与成绩数据可视化设计_完整源码.zip 是一个包含脱贫攻坚战下贫困地区的发展趋势与成绩数据可视化设计的完整源码的压缩文件。该项目旨在通过信息可视化的方式,展示脱贫攻坚战下贫困地区的发展趋势和成绩,为相关决策提供参考。 项目背景:该项目以脱贫攻坚战为背景,通过对贫困地区的发展趋势和成绩数据进行收集、整理和分析,利用信息可视化的技术手段,展示贫困地区的发展情况和成果。 数据来源:该项目采用了多种数据来源,包括政府公开数据、调研数据、统计数据等,以确保数据的准确性和可靠性。 可视化展示:该项目通过多种可视化手段,如地图、图表、动画等,将数据以直观、生动的方式展示出来,便于相关决策者理解和关注。 计算机设计大赛参赛者:该项目可以作为参赛者的参考项目,帮助参赛者了解信息可视化技术在脱贫攻坚领域的应用和实现方法。

2023-12-13

【中国大学生计算机设计大赛信息可视化赛道】获奖项目深入剖析-中国野生动物保护可视化源码.zip

项目剖析详解:https://shangjinzhu.blog.csdn.net/article/details/134959024 订阅专栏后源码免费。 资源介绍: 【中国大学生计算机设计大赛信息可视化赛道】获奖项目深入剖析—中国野生动物保护可视化源码.zip 是一个包含中国野生动物保护可视化项目源码的压缩文件。该项目旨在通过信息可视化的方式,展示中国野生动物的保护状况,提高公众对野生动物保护的关注和意识。 内容概要: 项目背景:该项目以中国野生动物保护为主题,通过收集和分析相关数据,利用信息可视化的技术手段,展示中国野生动物的保护状况和趋势。 数据来源:该项目采用了多种数据来源,包括政府公开数据、科研机构数据、环保组织数据等,以确保数据的准确性和可靠性。 可视化展示:该项目通过多种可视化手段,如地图、图表、动画等,将数据以直观、生动的方式展示出来,便于公众理解和关注。 适用人群: 该资源适用于以下人群: 计算机设计大赛参赛者:该项目可以作为参赛者的参考项目,帮助参赛者了解信息可视化技术的应用和实现方法。

2023-12-12

蒲公英和雏菊图像数据集.zip

该数据集包含 1823 张蒲公英和雏菊花的图像 资源介绍: 蒲公英和雏菊图像数据集.zip 是一个包含 1823 张蒲公英和雏菊花的高清图像数据集,旨在帮助机器学习和深度学习领域的研究人员、工程师、学生等群体进行花卉分类、识别和相关任务。该数据集中的图像均经过专业的处理和标注,以确保数据的质量和准确性。 内容概要: 数据集组成:该数据集包含 1823 张蒲公英和雏菊花的图像,每张图像都经过了专业的标注和处理,以确保数据的质量和准确性。 图像质量:数据集中的图像均为高分辨率、清晰的蒲公英和雏菊花图像,能够清晰地展示花卉的特征和细节。 分类类别:该数据集包含蒲公英和雏菊两种不同类型的花卉图像,因此可以进行二分类或多分类任务。 适用人群: 该数据集适用于机器学习和深度学习领域的研究人员、工程师、学生等群体,可以帮助他们进行花卉分类、识别和相关任务,为自然图像分类、目标检测等应用提供支持。 场景目标: 花卉分类和识别:研究人员和工程师可以利用该数据集训练和测试深度学习模型,实现蒲公英和雏菊花的自动分类和识别任务,提高分类和识别的准确性和效率。 自然图像分类:该数据集也可以用于自然图像

2023-12-12

西红柿识别图像数据集-最全.zip

西红柿识别图像数据集-最全.zip 图像被分为二元类别(健康和不合格)和三元类别(成熟、未成熟和不合格)。 资源介绍: 西红柿识别图像数据集-最全.zip 是一个包含大量西红柿图片的数据集,旨在帮助农业领域的研究人员、农学家、农业从业者等群体进行西红柿品质的识别和分类。该数据集包含了健康和不合格的二元类别以及成熟、未成熟和不合格的三元类别的图像,共计数百张高质量的图片。 内容概要: 数据集组成:该数据集包含健康和不合格的二元类别以及成熟、未成熟和不合格的三元类别的西红柿图片,共计数百张高质量的图片。 图像质量:数据集中的图像均为高分辨率、清晰的西红柿图片,能够清晰地展示不同品质的西红柿的特征和细节。 分类类别:该数据集分为二元类别(健康和不合格)和三元类别(成熟、未成熟和不合格),可以根据实际需求进行不同的分类任务。 适用人群: 该数据集适用于农业领域的研究人员、农学家、农业从业者等群体,可以帮助他们进行西红柿品质的识别和分类任务,为农业生产和质量监控提供有力支持。

2023-12-12

水果识别图像数据集-包含市面上几乎所有常见水果.zip

水果识别图像数据集-包含市面上几乎所有常见水果.zip包含极大量的图片数据集。 test、train、valid 可以应用目的: 饮食管理:对特定水果过敏的用户可以使用该模型来识别混合餐或水果沙拉中的水果,使他们更容易管理饮食并避免过敏反应。 健康和保健应用程序:“过敏水果”模型可以集成到健康和保健应用程序中,根据用户的过敏情况指导用户食用水果,帮助更好的营养跟踪和膳食计划。 超市结账系统:杂货店可以在其自助结账系统中使用该模型来识别顾客购买的水果类型,特别是对于散装和未贴标签的水果进行正确定价。 农业质量控制:该模型可以帮助农民和农业企业对其产品进行有效的分类和分类,提高运营效率。 教育目的:该模型可用于旨在教孩子们水果类型的教育工具或游戏,甚至可以用作教授计算机视觉基础知识的工具。

2023-12-12

脑肿瘤CT图片数据集.zip

脑肿瘤CT图片数据集.zip 包含:brain_tumor_dataset、No、Yes 资源介绍: 脑肿瘤CT图片数据集.zip 是一个包含大量脑肿瘤CT图片的数据集,旨在帮助医疗图像分析领域的研究人员、医生、医学学生等群体进行脑肿瘤的检测、分类和诊断。该数据集包含了正常和患有脑肿瘤的CT图片,每张图片都经过了专业的标注和处理,以确保数据的质量和准确性。 内容概要: 数据集组成:该数据集包含正常和患有脑肿瘤的CT图片,每张图片都经过了专业的标注和处理,以确保数据的质量和准确性。 图像质量:数据集中的图像均为高分辨率、清晰的CT图片,能够清晰地展示脑部结构和肿瘤特征。 分类类别:该数据集包含了正常和患有脑肿瘤的CT图片,因此可以进行二分类或多分类任务。 适用人群: 该数据集适用于医疗图像分析领域的研究人员、医生、医学学生等群体,可以帮助他们进行脑肿瘤的检测、分类和诊断任务。 场景目标: 脑肿瘤检测:研究人员和医生可以利用该数据集训练和测试机器学习模型,实现脑肿瘤的自动检测和分类任务,提高诊断的准确性和效率。

2023-12-12

水母图像数据集.zip

该数据集包含 900 张水母图像,属于六个不同类别和物种:淡紫色毒刺水母、月亮水母、桶状水母、蓝色水母、罗盘水母和狮鬃水母。您可以应用机器学习技术来深入了解水母分类、物种识别和颜色分析。 水母分类:利用机器学习技术,根据水母的物理特征将水母图像分为不同的类别。 物种识别:使用机器学习技术根据水母的物理特征来识别数据集中的水母物种。 颜色分析:使用机器学习技术来分析数据集中水母的颜色模式。 海月水母 (Aurelia aurita):常见的水母,有四个马蹄形性腺,通过其半透明钟形顶部可见。它通过用触手收集水母、浮游生物和软体动物来进食。 桶状水母 (Rhizostoma pulmo):英国水域中发现的最大的水母,其钟形直径可达 90 厘米。它以触手捕捉浮游生物和小鱼为食。 蓝色水母 (Cyanea lamarckii):大型水母,直径可达 30 厘米。它以触手捕捉浮游生物和小鱼为食。 罗盘水母(Chrysaora hysoscella):因其钟形上类似罗盘的棕色斑纹而得名。它以触手捕捉浮游生物和小鱼为食。

2023-12-12

路标检测数据集-最新.zip

近年来,计算机视觉和深度学习的进步彻底改变了目标检测领域,在各个领域实现了广泛的应用。道路安全是一项重要的应用,准确、高效的物体检测在预防事故和改善交通管理方面发挥着至关重要的作用。为了解决该领域特有的挑战,研究人员和开发人员创建了专门为道路相关物体检测任务量身定制的专用数据集。在这些数据集中,ROAD MARK 数据集作为训练和评估对象检测模型的全面且有价值的资源脱颖而出。 ROAD MARK 数据集是带注释的图像和视频的精选集合,专注于检测和分类道路标记及相关对象。它涵盖了道路上遇到的各种场景,包括高速公路、城市街道和农村地区,使其高度代表现实世界的情况。该数据集包括各种类型的道路标记,例如车道线、箭头、人行横道、限速标志以及交通灯和障碍物等其他相关对象。 该数据集包含 2892 个样本,该数据集(如图所示)被正确地分为三个部分:Train、Valid、Test!

2023-12-12

胸部 CT 扫描图像数据集最新.zip

这是一个关于胸部CT扫描图像的数据集,用于乳腺癌检测的项目。该数据集包含了三种胸部癌症类型,即腺癌、大细胞癌、鳞状细胞癌,以及一个正常细胞文件夹。数据文件夹主要包含"Data"文件夹内的所有步骤文件夹,分为"test"、"train"、"valid"三个子文件夹,分别代表测试集、训练集和验证集。训练集占总数据的70%,测试集占20%,验证集占10%。 这个数据集的适用人群包括从事医学影像分析的研究人员、医生、医学学生等。通过使用这个数据集,他们可以训练和测试机器学习模型,提高乳腺癌检测的准确性和效率。此外,这个数据集也可以用于开发新的深度学习模型,以更好地检测乳腺癌。 该数据集的场景目标包括: 乳腺癌检测:研究人员和医生可以使用这个数据集训练和测试机器学习模型,以提高乳腺癌检测的准确性和效率。 医学研究:医学学生和研究者可以利用这个数据集进行乳腺癌的形态学研究、诊断技术研究等,以深入了解乳腺癌的发病机制和诊断方法。 辅助诊断:医生可以使用这个数据集结合人工智能技术,实现乳腺癌的辅助诊断,提高临床诊断的准确率和效率。

2023-12-12

豆叶病害分类图像数据集最新.zip

该数据集包含三种豆科植物叶片病变状态的照片,其中训练集中有1034张图像,校准集中有133张图像,数据大小为155MB。支持识别以下叶子病变状态:healthy、angular_leaf_spot 和 bean_rust。 资源介绍: 豆叶病害分类图像数据集【最新】.zip 是一个包含豆科植物叶片病变状态照片的数据集,旨在帮助农业领域的研究人员、农学家、农业从业者等群体进行豆叶病害的分类和识别。该数据集包含训练集和校准集两个部分,训练集包含1034张图像,校准集包含133张图像,数据大小为155MB。该数据集支持识别三种豆科植物叶片病变状态,包括健康(healthy)、角斑病(angular_leaf_spot)和锈病(bean_rust)。 内容概要: 数据集组成:该数据集由训练集和校准集两个部分组成,其中训练集包含1034张图像,校准集包含133张图像。 图像来源:该数据集中的图像均来自真实的豆科植物叶片,拍摄了健康和患有不同病害的叶片。 图像质量:该数据集中的图像均为高分辨率、清晰的照片,能够清晰地展示叶片的细节和病变特征。

2023-12-12

视网膜病变图像数据集.zip

该数据集由在各种成像条件下捕获的大量高分辨率视网膜图像组成。医学专业人员评估了每张图像中是否存在视网膜病变,并按 0 到 1 之间的等级进行评分,对应于以下类别: 有身体疾病视网膜病变 ---> 0 无身体疾病视网膜病变 ---> 1 视网膜病变图像数据集约5000张 资源介绍: 视网膜病变图像数据集.zip 是一个包含大量高分辨率视网膜图像的数据集,旨在帮助医疗图像分析领域的研究人员、医生、医学学生等群体进行视网膜病变的检测和识别。该数据集中的图像是在各种成像条件下捕获的,包括有身体疾病和无身体疾病的视网膜病变,每张图像都由医学专业人员进行了评估和分类。这个数据集可以帮助相关人员提高视网膜病变识别的准确率和效率,从而更好地进行医学研究和诊断。 内容概要: 图像数量:该数据集包含约5000张高分辨率视网膜图像。 图像来源:图像是在各种成像条件下捕获的,包括有身体疾病和无身体疾病的视网膜病变。 图像质量:每张图像都经过医学专业人员的评估,并按0到1之间的等级进行评分。 分类类别:数据集中的图像分为两个类别,有身体疾病视网膜病变和无身体疾病视网膜病变。

2023-12-11

高质量-验证码图像数据集.zip

有 10,001 张图像(其中 1 张额外图像表示好运 :D),它们是: 灰色背景上的黑色文字 或者白色背景上的灰色文字 验证码共有 21 个可能的字符。此外,所有验证码的长度均为 6 个字符,尺寸为 (250x50)。 我成功使用的一些方法是: 具有 BCE 损失的 CNN 具有 CTC 损失的 CNN-LSTM 卷积自动编码器 -> 使用验证码潜在表示的简单神经网络分类器 未来使用的想法 图像分割/分类以分割两种类型的验证码。因此,我们可以为这两个版本中的每一个训练更专业的模型。

2023-12-11

吸烟者检测图片分类数据集最新.zip

该数据集包含 1120 张图像,平均分为两类,其中 560 张图像属于 Smoking(吸烟者)类别,其余 560 张图像属于 NotSmoking(非吸烟者)类别。该数据集是通过输入多个关键字扫描各种搜索引擎来组织的,这些关键字包括吸烟、吸烟者、人、咳嗽、吸入器、打电话的人、饮用水等。我们尝试考虑这两类中的通用图像来创建特定的图像。类间混乱程度,以便更好地训练模型。例如,吸烟类包含多个角度和各种手势的吸烟者图像。此外,NotSmoking 类中的图像由非吸烟者的图像组成,其手势与吸烟图像略有相似,例如人们喝水、使用吸入器、拿着手机、咳嗽等。未来的研究人员可以使用该数据集来提出用于自动检测和筛查吸烟者的深度学习算法,以确保绿色环境并在智慧城市中进行监控。数据集中的所有图像都经过预处理并将大小调整为 250×250 的分辨率。我们考虑了 80% 的数据用于训练和验证目的,20% 的数据用于测试。

2023-12-11

疟原虫识别数据集.zip

疟原虫识别数据集.zip该数据集包含2703张图像,来自133张用Fields染色处理过的厚血涂片。每个图像都有一个附带的注释文件,其中包含任何可见疟原虫周围边界框的坐标。使用安装在布鲁内尔SP150显微镜上的Motic MC1000摄像头以1000倍放大率拍摄图像。 资源介绍: 疟原虫识别数据集.zip 是一个包含2703张图像的数据集,旨在帮助生物医学领域的研究人员、医生、医学学生等群体进行疟原虫的识别和分析。该数据集中的图像是通过Fields染色处理后的厚血涂片拍摄而成,每个图像都附带有疟原虫周围边界框的坐标注释。这个数据集可以帮助相关人员提高疟原虫识别的准确率和效率,从而更好地进行疟疾的诊断和治疗。 内容概要: 图像数量:该数据集包含2703张疟原虫图像。 图像来源:图像来自133张用Fields染色处理过的厚血涂片。 图像注释:每个图像都有一个附带的注释文件,其中包含任何可见疟原虫周围边界框的坐标。 拍摄设备:使用安装在布鲁内尔SP150显微镜上的Motic MC1000摄像头以1000倍放大率拍摄图像。

2023-12-11

垃圾分类图片数据集(训练集-测试集).zip

数据文件包括训练集(有标注)和测试集(无标注),训练集的所有图片分别保存在train文件夹下面的0-39个文件夹中,文件名即类别标签,测试集待分类的垃圾图片在test文件夹下,testpath.txt保存了所有测试集文件的名称,格式为:name+\n。 资源介绍: 垃圾分类图片数据集(训练集-测试集).zip 是一个包含了大量垃圾分类图片的数据集,旨在帮助开发者、研究人员和环保爱好者等群体训练和测试垃圾分类模型。该数据集分为训练集和测试集两个部分,其中训练集包含有标注的图片,测试集包含无标注的图片。 内容概要: 训练集:该部分包含了大量已标注的垃圾分类图片,每个类别的图片都存储在独立的文件夹中,文件夹名称即为类别标签。开发者可以利用这些标注数据训练自己的垃圾分类模型。 测试集:该部分包含了一些未标注的垃圾分类图片,这些图片是用来对训练好的模型进行测试和评估的。开发者可以通过对测试集进行模型评估,了解模型的准确率和鲁棒性。 适用人群: 该资源适用于从事垃圾分类相关领域的研究人员、开发者、环保爱好者等群体。通过使用该数据集,他们可以构建和优化垃圾分类模型,提高垃圾分类的准确率和效率

2023-12-11

中国居民消费价格指数CPI数据可视化案例-Python可视化技术实现.zip

项目剖析详解:https://shangjinzhu.blog.csdn.net/article/details/134936635 订阅专栏后免费。 资源介绍: 中国居民消费价格指数CPI数据可视化案例-Python可视化技术实现.zip 是一个包含了使用Python可视化技术实现的中国居民消费价格指数CPI数据可视化案例的压缩文件。该案例通过获取和处理2010年至2020年的CPI数据,使用多种图表和图形展示了中国居民消费价格指数的变化趋势和分布情况,包括折线图、柱状图、散点图和热力图等。 内容概要: 数据源:该案例使用了国家统计局公开的CPI数据作为数据源,包含了2010年至2020年的月度CPI数据。 数据处理:通过Python中的pandas库对数据进行清洗和处理,包括缺失值填充、异常值处理等。 图表展示:使用Python中的matplotlib、seaborn等可视化库,将处理后的CPI数据以多种图表和图形形式展示出来,包括折线图、柱状图、散点图和热力图等。

2023-12-11

大屏可视化基础学习必备-大屏可视化通用可套用模板.zip

项目剖析详解:https://blog.csdn.net/weixin_52908342/article/details/134865943 订阅专栏后源码免费。 大屏可视化基础学习必备-通用可套用模板.zip 是一个包含了多个大屏可视化基础学习必备的通用可套用模板的压缩文件,可以帮助初学者快速学习和掌握大屏可视化的基础知识和技能。该模板包含了多个不同类型的大屏可视化效果和示例,例如折线图、柱状图、饼图、散点图等等,并且每个示例都提供了详细的步骤和说明,让学习者可以轻松地学习和使用。 大屏可视化基础概念:该模板介绍了大屏可视化的基础概念和原理,包括数据可视化、大屏显示技术、可视化设计原则等等,帮助初学者了解大屏可视化的基本知识和技术。 大屏可视化常用工具:该模板介绍了常用的的大屏可视化工具和库,包括ECharts、D3.js、Highcharts等等,并且每个工具都提供了简单的示例和说明,让学习者可以轻松地掌握和使用。 大屏可视化效果示例:该模板包含了多个不同类型的大屏可视化效果和示例,例如折线图、柱状图、饼图、散点图等等

2023-12-07

Docker最全实战笔记教程.zip

资源介绍: Docker最全实战笔记教程.zip 是一个包含了一系列关于Docker实战笔记教程的压缩文件,这些教程旨在帮助开发者全面了解和掌握Docker的相关技术和应用。该压缩文件包含了多个不同方面的教程,涵盖了Docker的基本概念、镜像管理、容器管理、网络配置等多个方面。 内容概要: Docker基本概念:该教程介绍了Docker的基本概念和原理,包括镜像、容器、Dockerfile等,帮助开发者了解Docker的核心思想和基本操作。 镜像管理:该教程详细介绍了如何使用Docker命令和Dockerfile来构建和管理镜像,包括如何创建、构建、推送和拉取镜像等操作。 容器管理:该教程介绍了如何使用Docker命令来管理和操作容器,包括如何创建、启动、停止、移动和删除容器等操作。 网络配置:该教程介绍了如何配置和管理Docker容器的网络,包括如何创建自定义网络、将容器连接到网络以及配置网络端口映射等操作。

2023-11-28

OpenCV项目合集.zip

OpenCV项目合集.zip 是一个包含了多个使用OpenCV库开发的项目源代码的压缩文件,可以帮助开发者快速学习和应用OpenCV进行图像处理和计算机视觉应用开发。该合集包含了多个不同类型的项目,涵盖了图像处理、人脸识别、物体检测、运动跟踪等多个领域。 内容概要: 图像处理项目:该合集包含了一些基础的图像处理项目,如图像滤波、图像变换、图像分割等。这些项目可以帮助开发者熟悉OpenCV的图像处理功能和算法。 人脸识别项目:该合集包含了一些人脸识别相关的项目,如人脸检测、人脸对齐、人脸特征提取等。这些项目可以帮助开发者了解和学习如何使用OpenCV进行人脸识别。 物体检测项目:该合集包含了一些物体检测相关的项目,如目标检测、物体跟踪等。这些项目可以帮助开发者了解和学习如何使用OpenCV进行物体检测和跟踪。 运动跟踪项目:该合集包含了一些运动跟踪相关的项目,如视频处理、运动轨迹提取等。这些项目可以帮助开发者了解和学习如何使用OpenCV进行运动跟踪和视频处理。 适用人群: 该资源适用于需要学习和应用OpenCV进行图像处理和计算机视觉应用开发的开发者或技术爱好者。通过

2023-11-28

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除