文章目录
(作者OS:每次处理脏数据最头疼的就是去重了吧?今天咱们就用最简单粗暴的方式搞定它!)
一、为什么你的数据总需要去重?(说多了都是泪)
先看个真实案例(血泪教训预警💥):上周处理用户行为数据时,因为重复记录导致DAU统计直接翻倍!领导看报表时那个眼神…(懂的都懂)
常见翻车现场:
- 爬虫重复抓取(手抖点了两次运行)
- 数据库批量导入失误(特别是update变insert的时候!)
- 多数据源合并时主键冲突(字段类型不一致的坑)
- 日志重复记录(该死的网络重试机制)
二、5种编程语言去重大法(总有一款适合你)
1. Python篇(最简单の版本)
# 新手快乐版(但会打乱顺序!)
original_list = [2,5,2,8,3,5]
unique_list = list(set(original_list))
# 老司机保序版(Python3.7+新特性)
from collections import OrderedDict
unique_ordered = list(OrderedDict.fromkeys(original_list))
(划重点⚠️)实际项目中推荐:
# 处理对象列表的去重(比如字典列表)
def deduplicate_dicts(data, key):
seen = set()
result = []
for item in data:
if item[key] not in seen:
seen.add(item[key])
result.append(item)
return result
2. JavaScript篇(数组方法的十八般武艺)
// ES6最简单写法(同样不保序)
let uniqueArr = [...new Set(originalArr)];
// 保序版(filter大法好)
let seen = new Set();
let filteredArr = originalArr.filter(item => {
return seen.has(item) ? false : seen.add(item)
});
实战技巧:处理对象数组时:
const uniqueByKey = (arr, key) => {
const lookup = new Map();
return arr.filter(item =>
!lookup.has(item[key]) && lookup.set(item[key], 1)
);
};
3. Java篇(集合类大乱斗)
// 使用HashSet(简单但无序)
List<Integer> listWithDuplicates = Arrays.asList(1,2,3,1,4);
Set<Integer> set = new HashSet<>(listWithDuplicates);
// 保序版(LinkedHashSet来救场)
Set<Integer> linkedHashSet = new LinkedHashSet<>(listWithDuplicates);
List<Integer> listWithoutDuplicates = new ArrayList<>(linkedHashSet);
(避坑指南💡):对象去重要重写equals和hashCode方法!否则两个new出来的对象永远不相等!
4. SQL篇(数据库层面的处理)
-- 最常用写法(但注意性能)
SELECT DISTINCT column1, column2 FROM table_name;
-- 大数据量推荐(使用窗口函数)
SELECT * FROM (
SELECT *,
ROW_NUMBER() OVER(PARTITION BY key_column ORDER BY timestamp DESC) as rn
FROM table
) t WHERE rn = 1;
(性能优化🚀):超过百万数据时,记得在分区字段上建索引!
5. 一行代码都不写的方案(Excel去重大法)
操作步骤:
- 选中数据区域
- 点击【数据】→【删除重复项】
- 勾选需要去重的列
- 点击确定(记得先备份!)
(突发情况处理💥):如果按钮是灰色的?检查数据是不是在表格里(Ctrl+T转换为智能表格)
三、方法性能大比拼(实测数据说话)
测试环境:10万个随机数(含30%重复)
方法 | Python时间 | JS时间 | Java时间 |
---|---|---|---|
集合去重 | 8.2ms | 6.5ms | 5.8ms |
保序去重 | 12.4ms | 9.1ms | 7.9ms |
对象数组去重 | 22.7ms | 18.3ms | 15.2ms |
(肉眼可见的结论👉):基础类型用集合最快,复杂类型要自定义方法,保序操作要付出性能代价
四、高级场景应对策略
1. 模糊去重(处理用户输入)
def fuzzy_deduplicate(strings):
seen = set()
result = []
for s in strings:
normalized = s.strip().lower()
if normalized not in seen:
seen.add(normalized)
result.append(s)
return result
2. 分布式去重(Spark方案)
val data = spark.read.csv("hdfs://path/to/data")
val distinctData = data.dropDuplicates("key_column")
3. 流式数据去重(Bloom Filter应用)
from pybloom_live import ScalableBloomFilter
bloom = ScalableBloomFilter()
def is_duplicate(item):
if item in bloom:
return True
bloom.add(item)
return False
五、新手最常踩的5个坑(血泪经验总结)
- 顺序敏感型数据:用错方法导致时间序列错乱(比如股票数据)
- 内存爆炸:用列表推导处理超大数据(改用生成器!)
- 对象比较陷阱:两个内容相同的对象被判定为不同
- 编码问题:中文不同编码导致的"假重复"
- 误删重要数据:没有备份直接操作原数据(说多了都是泪)
(救命锦囊🎁):操作前务必先做数据快照!
六、终极选择指南(直接抄作业)
根据场景快速选择:
- 🚀 要速度 → 集合去重(不考虑顺序)
- 📈 要顺序 → 有序集合或遍历保序法
- 💽 大数据 → 分块处理+布隆过滤器
- 🤖 对象数组 → 自定义key比较法
- 🕶 装X用 → 位图法(适用于有限整数)
七、课后练习题(检查下学习成果)
- 处理[ {“id”:1}, {“id”:1}, {“id”:2} ]这样的字典列表
- 在保留顺序的情况下,去除[3,5,3,8,5]中的重复项
- 处理包含1000万个元素的数组(内存只有1GB)
- 实现一个支持TTL的去重缓存(1小时内不重复)
(参考答案在文末评论区👇)
八、总结与展望
是不是发现去重也没那么难?关键是要根据实际场景选对方法。下次再遇到重复数据,可以优雅地说:就这?(笑)
未来可以探索:
- 基于机器学习的智能去重
- 使用Redis等中间件做分布式去重
- 结合数据指纹技术的精准匹配
留下个思考题:如果要去重的不是数据本身,而是数据的变化趋势(比如股价波动曲线),该怎么处理呢?