Tensorflow学习和应用(5)_MNIST数据集

本文介绍了使用TensorFlow对MNIST数据集进行训练的过程,包括改进批次大小、添加隐藏层、调整初始化方式、将二次代价函数替换为交叉熵损失,并详细展示了经过21次训练后的结果。
摘要由CSDN通过智能技术生成

代码

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)

#每个批次的大小(每次训练的图片数)
batch_size = 100

#计算一共有多少个批次
n_batch = mnist.train.num_examples 

#定义两个placeholder占位符
x = tf.placeholder(tf.float32,[None,784]) #None代表任何值,按批次传,这里的None为100 #28*28=784
y = tf.placeholder(tf.float32,[None,10]) #数字是0-9,所以标签数为10

#创建一个简单的神经网络 输入层784个神经元输出层10个神经元
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b)

#两种方法选取一种,第二种比第一种准确率会高一些
#交叉熵需要加上_v2,不然会警告
#二次代价函数
loss = tf.reduce_mean(tf.square(y - prediction))
#交叉熵
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=prediction))

#以下优化方法二选一
#梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
train_step = tf.tra
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值