代码
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
#每个批次的大小(每次训练的图片数)
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples
#定义两个placeholder占位符
x = tf.placeholder(tf.float32,[None,784]) #None代表任何值,按批次传,这里的None为100 #28*28=784
y = tf.placeholder(tf.float32,[None,10]) #数字是0-9,所以标签数为10
#创建一个简单的神经网络 输入层784个神经元输出层10个神经元
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b)
#两种方法选取一种,第二种比第一种准确率会高一些
#交叉熵需要加上_v2,不然会警告
#二次代价函数
loss = tf.reduce_mean(tf.square(y - prediction))
#交叉熵
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=prediction))
#以下优化方法二选一
#梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
train_step = tf.tra