Agent是什么?Agent的组成部分有哪些?Agent工作流程是怎样的?

什么是Agent?

目前,国内很多厂商和平台将Agent翻译为“智能体”,但我想说的是,这种翻译并不完全准确。如果从最原始的词典里去查的话,Agent这个英文单词实际上是代理的意思。

这里的代理,我个人理解的含义指的是让大模型“代理/模拟”「人」的行为,使用某些“工具/功能”来完成某些“任务”的能力。

图片

所以,你会发现国外使用Agent这个词来代表让大模型调用工具或功能帮人完成某些事情的过程,其实还是比较形象的。因此,只要符合这个定义的,其实就是一种Agent。

我们可以看到有许多大厂、独角兽公司、研究所、高校,也给Agent下过许多定义,比较经典的一个定义是OpenAI的研究主管Lilian Weng给出的定义是:Agent = 大模型(LLM)+ 规划(Planning)+ 记忆(Memory)+ 工具使用(Tool Use)。

这个定义实际上是从技术实现的角度对Agent进行了定义,它指的是要实现一个Agent,就需要支持这些能力,它需要基于大模型,需要有规划的能力,能思考接下来要做的事情,需要有记忆,能够读取长期记忆和短期记忆,需要能够使用工具,他是将支持这些能力的集合体定义为了Agent。

图片
最近两年,大家都可以看到AI的发展有多快,我国超10亿参数的大模型,在短短一年之内,已经超过了100个,现在还在不断的发掘中,时代在瞬息万变,我们又为何不给自己多一个选择,多一个出路,多一个可能呢?

与其在传统行业里停滞不前,不如尝试一下新兴行业,而AI大模型恰恰是这两年的大风口,整体AI领域2025年预计缺口1000万人,其中算法、工程应用类人才需求最为紧迫!

学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。【点击蓝字获取】

【2025最新】AI大模型全套学习籽料(可白嫖):LLM面试题+AI大模型学习路线+大模型PDF书籍+640套AI大模型报告等等,从入门到进阶再到精通,超全面存下吧!

另外的一个定义是复旦大学NLP团队给出来的,他们认为Agent的概念框架包括三个组件:大脑感知行动

大脑模块作为控制器,承担记忆、思考和决策等基本任务。

感知模块从外部环境感知并处理多模态信息。

行动模块则使用工具执行任务并影响周围环境。

比如:当人类询问是否会下雨时,感知模块将指令转换为大模型可以理解的表示,然后,大脑会根据当前天气和互联网天气报告开始推理,最后,行动模块作出回应并将雨伞递给人类。通过重复上述过程,Agent可以不断获得反馈并与环境互动。

图片

其实这些各种版本的定义实际上是对我们刚才所说的Agent代理「人」做某些事情的一个更细致的拆解而已。

大家仔细想想,人要做某件事情,也是需要根据自己的记忆(学过的知识、当前事情的上下文),需要先规划这个事情怎么做,可能需要做一些思考、问题拆解,这中间也可能会使用各种各样的工具,最终通过某些动作、操作去把把某件事情完成。

因此,国内将Agent翻译为智能体,也是在表达,一个能规划、有记忆、能使用工具的东西,它又不是一个人,也不是一个动物,又不能直接将其描述为一个机器人(因为不一定是机器人形态,但有大脑),所以就给他起了个名字,叫“智能体”。

Agent的组成部分

Agent 由多个组件协同工作,以实现高效决策和任务执行。看到很多文章都提到说:大模型Agent由规划记忆工具行动四大关键部分组成,分别负责任务拆解与策略评估、信息存储与回忆、环境感知与决策辅助、以及将思维转化为实际行动。

但实际上现在的大模型Agent最主要几个关键部分为:base大模型的动态推理规划、工具模块、记忆模块。如下图所示:

图片

Agent工作流程

基于上面对Agent的组成部分,一个典型的Agent运行流程一般会包括感知、推理、决策、执行、反馈等几个流程。其中:

感知(Perception) 主要是接收输入信息,这个信息可以是用户输入或者是通过传感器在环境中获取信息;

推理(Reasoning):主要是综合上下文、环境感知信息等,分析输入数据并规划任务执行步骤;

决策(Decision Making):通过推理得到的结果来选择合适的工具或操作;

执行(Action Execution):调用 API、数据库或计算模块,完成任务;

反馈(Feedback & Learning):分析执行结果,优化未来决策。

举个例子:比如在电商智能客服场景下,有一个 AI 智能客服 Agent 来解答客户问题。当用户输入为:“请帮我查询这件商品的库存。”

Agent接收到输入信息之后,首先会通过上下文正确解析用户请求,然后会调用库存数据库 API 查询数据,即通过订单号查询订单信息、获取商品ID,结合通过商品ID再获取库存。

最后结合用户问题和数据库结果来生成对客回复;输出给用户:“该商品目前有 15 件库存,可立即发货。”

举一反三,通过整合语言模型、工具和智能编排,Agent 能够动态响应不同类型的用户需求,实现更强大的自动化和智能化服务。

最近两年,大家都可以看到AI的发展有多快,我国超10亿参数的大模型,在短短一年之内,已经超过了100个,现在还在不断的发掘中,时代在瞬息万变,我们又为何不给自己多一个选择,多一个出路,多一个可能呢?

与其在传统行业里停滞不前,不如尝试一下新兴行业,而AI大模型恰恰是这两年的大风口,整体AI领域2025年预计缺口1000万人,其中算法、工程应用类人才需求最为紧迫!

学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。【点击蓝字获取】

【2025最新】AI大模型全套学习籽料(可白嫖):LLM面试题+AI大模型学习路线+大模型PDF书籍+640套AI大模型报告等等,从入门到进阶再到精通,超全面存下吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值