MNIST数据读取分析

本文详细解析了MNIST数据集的读取过程,包括从输入数据到内存的转换,数据预处理,one-hot编码,以及利用next_batch进行数据切分。通过分析read_data_sets方法和DataSet类,探讨了数据加载、验证集划分、数据归一化和随机化等步骤,强调了数据完全加载到内存的特点。
摘要由CSDN通过智能技术生成

从input_data.py中获取


Input_data.py只是个过渡,真正是mnist.pyread_data_sets方法


具体分析read_data_sets方法


这里调用了DataSet,imagets/labels都是空,看看


这里重点看fake_data,设置了2个变量


又设了4,应是为了后面的方法准备


有用的方法,就是next_batch.


切回read_data_sets


这里调用了base.maybe_download


from tensorflow.python.platform import gfile

Gfile明显是处理文件下载的.


获取目录


直接将远程数据下载到本地,又调用urlretrieve_with_retry(url, filename=None)方法


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值