有根数的同构
题目大意
主要是判断给你的k棵有根树,问哪几个树是同构的
发一下原题吧:
图的同构是指两个图“相同”,这有着广泛的应用。比如当我们要对一批图施行某种操作的时候,如果我们能发现其中一些图是同构的,我们就可以在这些同构的图中只保留一个,从而降低工作量。比如,上图中的T1和T3就是同构的。
下面我们给出图的同构的定义。给出两个图G1=(V1,E1),G2=(V2,E2)。如果存在一个V1到V2的一一映射f,使得(x,y)是G1的边当且仅当(f(x),f(y))是G2的边,则称G1和G2是同构的。也就是说,我们只关心顶点间的拓扑关系而不关心顶点的编号。
任意图的同构的判定尚没有有效的算法,但要判断两棵树是否同构则要容易一点。下面我们仅考虑有根树(即树形图:有向图,存在一个根,入度为0,从根到其他任一顶点恰有一条有向路)。给出K棵有根树T1,T2,…Tk,每棵树都有n个顶点,你的任务是求出这些树在同构关系下的所有等价类(如果两棵树同构,则它们属于同一个等价类)。
Input
输入第一行包含两个整数k(1<=k<=100)和n(1<=n<=50),表示总共有k棵树,每棵都是n个顶点。接下来k行,每行描述一棵树。每行包含n-1对整数,表示这棵树的n-1条有向边。树的编号和在数据中出现的顺序一致,也就是说输入文件中第二行描述的是T1,第三行描述的是T2,…,第k+1行描述的是Tk。
Output
把给出的K棵树划分为不同的等价类,使得同一等价类中任意两棵树同构。对于每个等价类,从小到大输出这个等价类中的树的编号,用等号隔开。如果有m个等价类,则按字典序输出,每个一行。例如,有4个等价类:{4,2,7},{5,1,3},{8,9},{6},则输出:
1=3=5
2=4=7
6
8=9
注意数字和等号之间不要有空格。行首和行末可以有空格。
样例输入
3 7
7 2 7 1 7 6 2 3 1 4 6 5
7 2 7 1 2 3 1 4 1 5 5 6
4 3 3 2 4 1 1 7 5 6 4 5
样例输出
1=3
2
解题思路
可以将每一个点的子树所有节点(包括本身)记录下来,再排序。序列完全一样的子树就同构。
代码
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int k,n,x,y;
int a[207],s[207][207];//a为临时数组,s[i][1..n]表示第i棵树的序列
int cnt,to[207],next[207],head[207];