有根树的同构

该博客讨论了如何判断有根树是否同构的问题,提供了样例输入和输出,并指出可以通过记录每个节点子树的所有节点序列并排序来确定两棵树是否同构。最后给出了解题思路和代码实现。
摘要由CSDN通过智能技术生成

有根数的同构

题目大意

主要是判断给你的k棵有根树,问哪几个树是同构的

发一下原题吧:
图的同构是指两个图“相同”,这有着广泛的应用。比如当我们要对一批图施行某种操作的时候,如果我们能发现其中一些图是同构的,我们就可以在这些同构的图中只保留一个,从而降低工作量。比如,上图中的T1和T3就是同构的。
下面我们给出图的同构的定义。给出两个图G1=(V1,E1),G2=(V2,E2)。如果存在一个V1到V2的一一映射f,使得(x,y)是G1的边当且仅当(f(x),f(y))是G2的边,则称G1和G2是同构的。也就是说,我们只关心顶点间的拓扑关系而不关心顶点的编号。
任意图的同构的判定尚没有有效的算法,但要判断两棵树是否同构则要容易一点。下面我们仅考虑有根树(即树形图:有向图,存在一个根,入度为0,从根到其他任一顶点恰有一条有向路)。给出K棵有根树T1,T2,…Tk,每棵树都有n个顶点,你的任务是求出这些树在同构关系下的所有等价类(如果两棵树同构,则它们属于同一个等价类)。

Input

输入第一行包含两个整数k(1<=k<=100)和n(1<=n<=50),表示总共有k棵树,每棵都是n个顶点。接下来k行,每行描述一棵树。每行包含n-1对整数,表示这棵树的n-1条有向边。树的编号和在数据中出现的顺序一致,也就是说输入文件中第二行描述的是T1,第三行描述的是T2,…,第k+1行描述的是Tk。

Output

把给出的K棵树划分为不同的等价类,使得同一等价类中任意两棵树同构。对于每个等价类,从小到大输出这个等价类中的树的编号,用等号隔开。如果有m个等价类,则按字典序输出,每个一行。例如,有4个等价类:{4,2,7},{5,1,3},{8,9},{6},则输出:
1=3=5
2=4=7
6
8=9
注意数字和等号之间不要有空格。行首和行末可以有空格。

样例输入

3 7
7 2 7 1 7 6 2 3 1 4 6 5
7 2 7 1 2 3 1 4 1 5 5 6
4 3 3 2 4 1 1 7 5 6 4 5

样例输出

1=3
2

解题思路

可以将每一个点的子树所有节点(包括本身)记录下来,再排序。序列完全一样的子树就同构。

代码

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int k,n,x,y;
int a[207],s[207][207];//a为临时数组,s[i][1..n]表示第i棵树的序列
int cnt,to[207],next[207],head[207];
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值