文章创作不易,麻烦大家点赞关注转发一键三连。也可以关注文章结尾后我的公众号与我联系。
在过去几年里,数字化转型一直是产业界和IT行业的热门话题。毫不夸张地讲,由于我国是世界第一大工业国,我们整个社会的数字化转型也走在了全世界的前面。
这一点从近几年我们周围生活的一些改变就可以看出一些端倪,譬如智能工厂大量出现,在汽车等高端制造产业,智能工厂基本上成为了标配。又比如银行网点人工柜台减少,智能服务终端基本代替了人工柜台的开户,存取款等普通业务。智慧建筑,智慧城市,智慧交通建设越来越普及。我们去饭店吃饭,二维码点单,后厨实时显示,机器人送餐都越来越普遍。这些都是整个社会数字化转型的成果。这些成果促进了生产力的发展,也给普通人的生活带来了很多便利。
社会和身处于社会中各种行业数字化转型的步伐在未来不会放慢,反而会因为AI(人工智能)技术的大发展而加快。
如果说过去几年,数字化转型的一大特点是投入成本较大,更适合大中型企业,那么随着最近AI技术,特别是大模型技术的大发展,数字化转型的成本将会显著降低。
我们将以AI技术为主要驱动力,融合了其他先进技术的企业数字化转型称为“AI数字化转型”或者“AI转型”。我们预判,在未来AI转型将成为企业数字化转型的主流。在这一系列文章中,我们提出一种渐进式AI转型的方法论。以帮助企业在不影响或者很少影响现有业务的情况下,迭代式、渐进式地进行业务的现代化,AI化改造。其目的是将业务变得更加智能化,自动化,减少人力成本,实现工作效率倍增。
由于文章比较长,我们将以系列文章的形式发表。在这第一篇文章中,我想对AI转型中的几种关键概念和技术做一些探讨。以帮助非IT行业的读者对AI转型有一个更加清晰的了解。
人工智能也就是AI技术并不是一个新词。从上世纪五六十年代就一直有相关的研究和应用。而AI的大规模应用实际上是最近十几年的事情。这主要是因为随着计算机算力的提升,很多过去普通计算机无法完成的AI相关运算变得可以实现了。
时至今日,AI应用主要有几个主要领域:
-
自然语言相关:自然语言理解和自然语言对话。类似chatgpt,我国的文心一言,Kimi,通义千问等。
-
计算机视觉:譬如对图像、视频的解析和理解,文生图,文生视频,人脸识别等。
-
语音和声音:语音合成,语音转文字,文字转语音,音乐生成等
-
数据分析和规划:譬如数据预测,智能导航所需要的路径分析,财务数据,供应链数据规划等等
这几种技术在最近这十几年里实际上应用都很多。我们谈到企业的数字化转型,其中也包括以上所列各种技术的应用。但是AI技术一直都处在一种不温不火的发展状态。一直到2022年末,以chatgpt为代表的生成式AI迎来了一个爆发阶段。带动了整个社会的AI热潮。
究其原因,可能是因为这种接近于人类理解的机器对话确实给人比较多的思维震撼。也是因为算力的不断提高,AI大模型进化速度加快。
这种进化速度加快主要表现在两个方面:
-
研究大模型所需要的硬件门槛下降,很多企业,科研机构和学校可以在合理的成本下生成大模型,出现了很多开源或者闭源的大模型。
-
普通人使用大模型的成本也降低到了可以接受的水平。一些参数规模比较小的大模型可以在消费级显卡和计算机上面运行。出现了很多开源大模型,这些大模型允许自由下载和运行,让本来大企业独占的大模型技术成了平民技术。而云服务商的大模型云服务更是让大模型应用的普及成为了可能,因为你不再需要强大的算力,通过云服务就可以直接使用更先进,参数更多的大模型。而根据Token或者使用次数付费的云收费模式也让接入大模型的门槛进一步降低。
另一个值得关注的趋势是AI编程门槛的降低。很多软件行业以外的人可能不知道,甚至在2021或者2022年,普通程序员进行AI编程都还是一个非常困难的事情。因为那个时候,使用AI编程框架需要大量高等数学知识。你要开发AI应用,大部分时候需要你去训练自己的模型,而训练模型需要数学知识。至少你得知道怎么做标注,什么样的标注最可能有效,什么叫做epoch, loss等等概念,这些最基础的概念就已经把大部分人都挡在门外了。更不要提什么多层神经网络,向量计算,RNN等等了。这对于大部分只懂类,方法,函数入参出参,REST的程序员来说,几乎是不可能的任务。
我的很多程序员朋友,在2019年到2022年间都开始了重新学习高数和线性代数,就是为了能开始AI编程,当然最后基本上都是在短时间内实践了“AI编程从开始到放弃”。
而在今天,一切都变了。大模型的编程接口已经变得极度简单,甚至和普通编程接口也差不了多少了。购买一个带了消费级显卡的游戏电脑,就可以跑一些参数较小的开源大模型。云服务商都推出了大模型的API云服务接口,使用这些云服务,你甚至在没有独立显卡的笔记本上就可以使用云端的大模型,使用一天这些云服务的费用可能还不到几元钱。
在成本降低的同时,AI能力特别是生成式大模型的能力在这两年也有了明显发展。大模型的“思维能力”和“对话能力”明显进步,在一些专业方面能达到类似普通人类的效果。另一方面AI Agent也就是AI智能体技术打通了AI语言大模型和现实世界的鸿沟。这也是AI数字化转型中的关键技术。
很多人说起AI来,脑子里浮现的场景仍然是客服机器人,帮忙写文档,电话应答等等。似乎AI是无法和现实世界联系起来的。譬如你让AI引擎帮你预定一个餐馆的座位,它是无法做到的。因为它既没有办法打电话给餐馆,也没有办法通过美团之类APP下单。
你也可以自己做一个或者请人开发一个程序去打电话,但是这个程序可能只能针对特定指令(譬如鼠标点击,键盘输入)进行机械化打电话,一旦餐馆接电话的人问一些你程序没有预设的问题,它可能就没法用了。
但是如果用AI Agent技术就可以把AI引擎的自然语言能力和你开发的打电话程序结合起来,从而实现用自然语言与机器沟通,让机器用自然语言去帮你打电话预定座位。这种对话就可以非常自然化。无论是你和机器之间,还是餐馆接电话的服务人员和机器之间,都可以用比较自然,更接近人类对话的方式完成这一任务。
最近这几十年,无论是我国还是整个世界经济发展都很快。相应的是人力成本在不断上升。这对各行各业都提出了新的挑战。降本增效几乎成为了各行各业永恒的主题。数字化转型中的一个重要方法就是用自动化的机器工作代替原本需要人来做的工作。在过去,这种数字化替代更多是在重复化,机械化的流水线工作中。而随着AI技术特别是大模型和AI Agent技术的不断推进,在需要简单沟通,思考的岗位应用AI实现自动化已经成为了可能,甚至是比较低成本就可以实现。未来这一类AI转型将为企业节省大量成本。
由于AI技术的成熟度上升和成本下降,无论是在大型企业还是中小型企业中,应用AI技术将不再有门槛。当我们纵观世界产业发展史就会发现,一旦一个可以产生显著经济效益的先进技术的成本和门槛都降到了大众可以接受的水平,它几乎就必然会迎来一个大发展的阶段。而AI技术在目前刚好到了这个临界点。在未来,应用AI数字化转型不仅是潮流,是趋势,更是各行各业必需进行的动作。率先进行了AI数字化转型的组织将受益于效率的大幅提高和成本的大幅下降,在未来的竞争中取得显著比较优势。