题目要求:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
解题思路:
因为一次只能爬一阶或者二阶,所以到f(n)的方法等于f(n-1)+f(n-2),当n为0,1,2时,方法为0,1,2种,当n>2时,一共有f(n-1)+f(n-2)种方法
代码展示:
Python:
class Solution:
def climbStairs(self, n: int) -> int:
if n<=2:
return n
f=0
f_1=1
f_2=2
for i in range(2,n):
f=f_1+f_2
f_1=f_2
f_2=f
return f
运行结果: