http://codeforces.com/contest/319
A. Malek Dance Club
找规律。。。
// Author : JayYe Created Time: 2013-11-10 19:57:49
#include
#include
#include
using namespace std;
typedef __int64 ll;
const int mod = 1000000007;
const int maxn = 100 + 5;
char s[maxn];
int main() {
scanf("%s", s);
int len = strlen(s);
ll ans = 0, mul = 1, save = 1;
for(int i = len-1;i >= 0; i--) {
if(s[i] == '1')
ans = (ans + mul)%mod;
if(i == 0) save = mul;
mul = mul*2%mod;
}
// printf("%I64d\n", save);
ans = ans*save%mod;
printf("%I64d\n", ans);
return 0;
}
B. Psychos in a Line
有一个长度为n的排列,每一轮如果有a(i) > a(i+1)的话,a(i+1)就被消掉,问需要多少轮停止消数字,如果有a(i) > a(i+1) > a(i+2),那么a(i+1)和a(i+2)会在一轮内被消掉。
思路: 设dp[ i ]表示从i开始到n至少要多少轮停止,对于任何一个数,从当前位置往后消数的话,遇到一个比它大的数就停止了,所以对于当前枚举的i,考虑后面的数 a(j)如果比它小的话,j直接消到不能消为止,再找下一个数,如果该数比a(i)大,那就停止,如果小,ans+1继续消。用一个单调栈保存从后面往前面从大到小的数,每次取出栈顶元素,如果该元素比a(i)大,就停止,否则更新dp[i],直到栈为空。
// Author : JayYe Created Time: 2013-11-12 9:09:50
#include
#include
#include
using namespace std;
const int maxn = 100000 + 5;
int dp[maxn], a[maxn], st[maxn];
int main() {
int n;
scanf("%d", &n);
for(int i = 1;i <= n; i++)
scanf("%d", &a[i]);
int top = 0;
for(int i = n;i >= 1; i--) {
int cur = 0;
while(top && a[i] > a[st[top]]) {
cur = max(cur + 1, dp[st[top]]);
top--;
}
dp[i] = cur;
st[++top] = i;
}
int ans = 0;
for(int i = 1;i <= n; i++)
ans = max(ans, dp[i]);
printf("%d\n", ans);
return 0;
}
C. Kalila and Dimna in the Logging Industry
有n颗高度分别为a(1), a(2) ... a(n)的树,有一个电锯每次可以选择一颗树来锯,每次只能锯一个单位高度,每次锯完后必须要充电,每次充电的花费取决于那些已经被锯完的树,花费为所有锯完的树中的i最大的那棵树的b(i)值,给定a(i) < a(i+1),b(i) > b(i+1),a(1) = 1,b(n) = 0。
思路:很容易可以想到O(n^2)的dp,设dp[i]表示锯掉 i 只剩下一个单位后的的最小值,i > j,dp[i] = max( dp[j] + a[i]*b[j] )。这看起来很像传说中的斜率dp,然而我没有学过。。于是乱想了一通,结果把斜率搞错了! 实际上是这样的,X = dp[j] + a[i]*b[j],则dp[j] = -a[i] * b[j] + X,这里的-a[i]就是斜率,b[j]相当于横坐标,dp[j]相当于纵坐标,也就是给定斜率,求过前面所有点的最小的截距!
具体可以见很好的解释 http://www.cnblogs.com/Rlemon/p/3184899.html
// Author : JayYe Created Time: 2013-11-12 14:47:18
#include
#include
#include
using namespace std;
typedef __int64 ll;
const int maxn = 100000 + 5;
ll a[maxn], b[maxn], dp[maxn];
int q[maxn<<1];
int main() {
int n;
scanf("%d", &n);
for(int i = 1;i <= n; i++)
scanf("%I64d", &a[i]);
for(int i = 1;i <= n; i++)
scanf("%I64d", &b[i]);
dp[1] = 0;
int st = 0, ed = 1;
q[0] = 1;
for(int i = 2;i <= n; i++) {
while(ed - st > 1 && (double)dp[q[st]] + a[i]*b[q[st]] >= (double)dp[q[st+1]] + a[i]*b[q[st+1]])
st++;
dp[i] = dp[q[st]] + a[i]*b[q[st]];
while(ed - st > 1 && (double)(dp[i] - dp[q[ed-1]])/(b[i] - b[q[ed-1]]) >= (double)(dp[q[ed-1]] - dp[q[ed-2]])/(b[q[ed-1]] - b[q[ed-2]]))
ed--;
q[ed++] = i;
// for(int j = st;j < ed; j++) printf("%d ", q[j]); puts("");
}
// for(int i = 1;i <= n; i++) printf("dp[%d] = %I64d\n", i, dp[i]);
printf("%I64d\n", dp[n]);
return 0;
}