Codeforces Round #189 (Div. 1)

http://codeforces.com/contest/319

A. Malek Dance Club

找规律。。。

// Author : JayYe  Created Time: 2013-11-10 19:57:49
#include 
  
  
   
   
#include 
   
   
    
    
#include 
    
    
     
     
using namespace std;
typedef __int64 ll;

const int mod = 1000000007;
const int maxn = 100 + 5;

char s[maxn];

int main() {
    scanf("%s", s);
    int len = strlen(s);
    ll ans = 0, mul = 1, save = 1;
    for(int i = len-1;i >= 0; i--) {
        if(s[i] == '1')
            ans = (ans + mul)%mod;
        if(i == 0)  save = mul;
        mul = mul*2%mod;
    }
//    printf("%I64d\n", save);
    ans = ans*save%mod;
    printf("%I64d\n", ans);
    return 0;
}

    
    
   
   
  
  


B. Psychos in a Line

有一个长度为n的排列,每一轮如果有a(i) > a(i+1)的话,a(i+1)就被消掉,问需要多少轮停止消数字,如果有a(i) > a(i+1) > a(i+2),那么a(i+1)和a(i+2)会在一轮内被消掉。


思路: 设dp[ i ]表示从i开始到n至少要多少轮停止,对于任何一个数,从当前位置往后消数的话,遇到一个比它大的数就停止了,所以对于当前枚举的i,考虑后面的数 a(j)如果比它小的话,j直接消到不能消为止,再找下一个数,如果该数比a(i)大,那就停止,如果小,ans+1继续消。用一个单调栈保存从后面往前面从大到小的数,每次取出栈顶元素,如果该元素比a(i)大,就停止,否则更新dp[i],直到栈为空。

// Author : JayYe  Created Time: 2013-11-12 9:09:50
#include 
  
  
   
   
#include 
   
   
    
    
#include 
    
    
     
     
using namespace std;

const int maxn = 100000 + 5;

int dp[maxn], a[maxn], st[maxn];

int main() {
    int n;
    scanf("%d", &n);
    for(int i = 1;i <= n; i++)
        scanf("%d", &a[i]);
    int top = 0;
    for(int i = n;i >= 1; i--) {
        int cur = 0;
        while(top && a[i] > a[st[top]]) {
            cur = max(cur + 1, dp[st[top]]);
            top--;
        }
        dp[i] = cur;
        st[++top] = i;
    }
    int ans = 0;
    for(int i = 1;i <= n; i++)
        ans = max(ans, dp[i]);
    printf("%d\n", ans);
    return 0;
}

    
    
   
   
  
  


C. Kalila and Dimna in the Logging Industry

有n颗高度分别为a(1), a(2) ... a(n)的树,有一个电锯每次可以选择一颗树来锯,每次只能锯一个单位高度,每次锯完后必须要充电,每次充电的花费取决于那些已经被锯完的树,花费为所有锯完的树中的i最大的那棵树的b(i)值,给定a(i) < a(i+1),b(i) > b(i+1),a(1) = 1,b(n) = 0。


思路:很容易可以想到O(n^2)的dp,设dp[i]表示锯掉 i 只剩下一个单位后的的最小值,i > j,dp[i] = max( dp[j] + a[i]*b[j] )。这看起来很像传说中的斜率dp,然而我没有学过。。于是乱想了一通,结果把斜率搞错了! 实际上是这样的,X = dp[j] + a[i]*b[j],则dp[j] = -a[i] * b[j] + X,这里的-a[i]就是斜率,b[j]相当于横坐标,dp[j]相当于纵坐标,也就是给定斜率,求过前面所有点的最小的截距!

具体可以见很好的解释  http://www.cnblogs.com/Rlemon/p/3184899.html

// Author : JayYe  Created Time: 2013-11-12 14:47:18
#include 
   
   
    
    
#include 
    
    
     
     
#include 
     
     
      
      
using namespace std;
typedef __int64 ll;

const int maxn = 100000 + 5;

ll a[maxn], b[maxn], dp[maxn];
int q[maxn<<1];

int main() {
    int n;
    scanf("%d", &n);
    for(int i = 1;i <= n; i++)
        scanf("%I64d", &a[i]);
    for(int i = 1;i <= n; i++)
        scanf("%I64d", &b[i]);
    dp[1] = 0;
    int st = 0, ed = 1;
    q[0] = 1;
    for(int i = 2;i <= n; i++) {
        while(ed - st > 1 && (double)dp[q[st]] + a[i]*b[q[st]] >= (double)dp[q[st+1]] + a[i]*b[q[st+1]])
            st++;
        dp[i] = dp[q[st]] + a[i]*b[q[st]];
        while(ed - st > 1 && (double)(dp[i] - dp[q[ed-1]])/(b[i] - b[q[ed-1]]) >= (double)(dp[q[ed-1]] - dp[q[ed-2]])/(b[q[ed-1]] - b[q[ed-2]]))
            ed--;
        q[ed++] = i;
//        for(int j = st;j < ed; j++) printf("%d ", q[j]); puts("");
    }
//    for(int i = 1;i <= n; i++)  printf("dp[%d] = %I64d\n", i, dp[i]);
    printf("%I64d\n", dp[n]);
    return 0;
}

     
     
    
    
   
   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值