[2014 ACM 西安区域赛]PalindromicTree 回文树

[2014 ACM 西安区域赛]PalindromicTree 回文树

1 WTF is PT

1.1 作用

一个匹配模式串回文子串的自动机

1.2 性质

  • 每个节点对应一个回文子串
  • fail 代表最长后缀回文子串

1.3 实现

1.3.1 定义

  • n:字符串长
  • m:节点个数
  • ed:最后一个节点
  • str[1..n]:存当前字符串
  • f[u]:fail[u]
  • s[u][1..26]:匹配边
  • l[u]:节点所代表回文串长

1.3.2 过程

  • str[ 0 ]=-1
  • 0 ← 空串
  • 1 ← 长度为-1的串
  • fail[ 0 ]=1
  1. 追加字符c
    • 从 ed 沿 fail 找到 u 使得 s[n-1-l[u]]=s[n]=c
    • 若 s[u][c] 不存在, 新建 v , 并暴力跑出 fail[v]
    • 更新 ed

2 题意

每次给出两个字符串, 求他们之间公共回文子串的个数

3 思路

注意到自动机中一条路径唯一对应一种回文子串, 可以把每种字串出现的次数先计算出来, 然后同时DFS两个自动机即可
如何计算出现次数呢?
又注意到在追加字符时, fail树的一条到根树链上的回文子串出现次数都多了一个, 所以只需将其记录在更新后的ed处, 并在回文树构成后前缀和一遍即可

4 代码
//The 2014 ACM-ICPC Asia Xi'an Regional Contest
#include<bits/stdc++.h>
using namespace std;
#define Re return
#define In inline
#define St static
#define Rg register
#define Op operator
#define Ct continue
#define inc(l, i, r) for(Rg int i=l; i<r; ++i)
#define dec(l, i, r) for(Rg int i=r; i>l; --i)
typedef long long ll;

const int mxn = 1<<18;

struct palindromicTree
{
    int n, m, ed, s[mxn], e[mxn][26], f[mxn], l[mxn];
    ll cnt[mxn];
    In int aN(int l_)
    {Re l[m]=l_, m++;}
    In void clear()
    {
        n=m=ed=0, s[0]=-1;
        memset(e, 0, sizeof e);
        memset(f, 0, sizeof f);
        memset(cnt, 0, sizeof cnt);
        aN(0), aN(-1), f[0]=1;
    }
    In int get(int u)
    {for(;s[n-1-u[l]]^s[n]; u=u[f]); Re u;}
    In void app(int c)
    {
        s[++n]=c-='a';
        Rg int u=get(ed);
        if(!u[e][c])//出现了新的回文串
        {
            Rg int v=u[e][c]=aN(u[l]+2);
            v[f]=u^1? get(u[f])[e][c]: 0;
        }
        ++cnt[ed=u[e][c]];
    }
    In void count()
    {
        dec(0, u, m)
            cnt[u[f]]+=cnt[u];
    }
} tA, tB;

ll DFS(int uA, int uB)
{
    Rg ll r=0;
    inc(0, i, 26)
        if(uA[tA.e][i] && uB[tB.e][i])
            r+=uA[tA.e][i][tA.cnt]*uB[tB.e][i][tB.cnt]+DFS(uA[tA.e][i], uB[tB.e][i]);
    Re r;
}

int main()
{
    St int t;
    for(Rg int t_=(scanf("%d", &t), 1); t_<=t; ++t_)
    {
        //initial
        St char a[mxn], b[mxn];
        scanf("%s%s", a, b), tA.clear(), tB.clear();
        Rg int n=strlen(a), m=strlen(b);
        inc(0, i, n)
            tA.app(a[i]);
        inc(0, i, m)
            tB.app(b[i]);
        tA.count(), tB.count();
        printf("Case #%d: %lld\n", t_, DFS(0, 0)+DFS(1, 1));
    }
}
//对多组数据(记得初始化)
//求两个字符串
//的公共回文串个数

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页