Hibench是一个大数据 benchmark 套件,用来测试各种大数据框架的速度,吞吐量,系统资源利用率。
它支持的框架有:hadoopbench、sparkbench、stormbench、flinkbench、gearpumpbench。
hibench作为一个测试hadoop的基准测试框架,提供了对于hive:(aggregation,scan,join),排序(sort,TeraSort),大数据基本算法(wordcount,pagerank,nutchindex),机器学习算法(kmeans,bayes),集群调度(sleep),吞吐(dfsio),以及新加入5.0版本的流测试,是一个测试大数据平台非常好用的工具
它支持的框架有:hadoopbench、sparkbench、stormbench、flinkbench、gearpumpbench。
hibench包含几个hadoop的负载
micro benchmarks
Sort:使用hadoop randomtextwriter生成数据,并对数据进行排序。
Wordcount:统计输入数据中每个单词的出现次数,输入数据使用hadoop randomtextwriter生成。
TeraSort:输入数据由hadoop teragen产生,通过key值进行排序。
hdfs benchmarks
增强行的dfsio:通过产生大量同时执行读写请求的任务测试hadoop机群的hdfs吞吐量
web search bench marks
Nutch indexing:大规模收索引擎,这个是负载测试nutch(apache的一个开源搜索引擎)的搜索子系统,使用自动生成的web数据,web数据中的连接和单词符合zipfian分布(一个单词出现的次数与它在频率表的排名成反比)
Pagerank:这个负载包含在一种在hadoop上的pagerank的算法实现,使用自动生成的web数据,web数据中的链接符合zipfian分布。(对于任意一个term其频度(frequency)的排名(rank)和frequency的乘积大致是一个常数)
machine learning benchmarks
Mahout bayesian classification(bayes):大规模机器学习,这个负载测试mahout(apache开源机器学习库)中的naive bayesian 训练器,输入的数据是自动生成的文档,文档中的单词符合zipfian分布。
Mahout k-means clustering(kmeans):测试mahout中的k-means聚类算法,输入的数据集由基于平均分布和高斯分布的genkmeansdataset产生。
data analytics benchmarks
Hive query benchmarks(hivebench):包含执行的典型olap查询的hive查询(aggregation和join),使用自动生成的web数据,web数据的链接符合zipfian分布。
参考网址:
https://github.com/intel-hadoop/HiBench
https://github.com/intel-hadoop/HiBench/blob/master/docs/build-hibench.md
https://github.com/intel-hadoop/HiBench/blob/master/docs/run-hadoopbench.md
一个完整的TeraSort