神经网络——非线性激活

本文介绍了ReLU激活函数的作用,它通过引入非线性提高模型表达能力。代码示例展示了ReLU的在位操作(inplace=True)和非在位操作(inplace=False)的区别。在位操作会直接修改输入张量,而非在位操作则不会改变原始输入,而是创建新的输出张量。此外,还展示了Sigmoid激活函数在处理CIFAR10数据集图像时的应用。
摘要由CSDN通过智能技术生成

非线性激活:加入一些非线性特征,非线性越多才能训练出符合各种特征的模型

ReLU():

inplace:可以选择就地执行操作。默认值:False

inplace为True时,输入的变量跟输出的变量结果一样,说明输入的变量结果变了。

inplace为False时,输入的变量不变,只改变输出的。

【代码演示1:inplace为True】小于0的部分经过处理后输出为0。

import torch
from torch import nn
from torch.nn import ReLU

input = torch.tensor([[1, -0.5],
                      [-1, 3.5]])
output = torch.reshape(input, (-1, 1, 2, 2))


# 创建网络
class net(nn.Module):
    def __init__(self):
        super(net, self).__init__()
        self.relu1 = ReLU(inplace=True)

    def forward(self, input):
        output = self.relu1(input)
        return output


# 实例
wang = net()
output = wang(input)
print("输入")
print(input)
print("输出")
print(output)

【代码演示2:inplace为False】

【代码演示:图片】

import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
# 加载数据集
dataloader = DataLoader(dataset, batch_size=64)


# 创建网络
class net(nn.Module):
    def __init__(self):
        super(net, self).__init__()
        self.sigmoid1 = Sigmoid()

    def forward(self, input):
        output = self.sigmoid1(input)
        return output


wang = net()
writer = SummaryWriter("r10")
i = 0
for data in dataloader:
    img, target = data
    writer.add_images("输入", img, i)
    output = wang(img)
    writer.add_images("输出", output, i)
    i = i + 1
writer.close()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值