题目描述
因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数。
写一个程序来找出范围[a,b](5 <= a < b <= 100,000,000)( 一亿)间的所有回文质数;
输入输出格式
输入格式:第 1 行: 二个整数 a 和 b .
输出格式:输出一个回文质数的列表,一行一个。
输入输出样例
输入样例#1:
5 500
输出样例#1:
5
7
11
101
131
151
181
191
313
353
373
383
说明
Hint 1: Generate the palindromes and see if they are prime.
提示 1: 找出所有的回文数再判断它们是不是质数(素数).
Hint 2: Generate palindromes by combining digits properly. You might need more than one of the loops like below.
提示 2: 要产生正确的回文数,你可能需要几个像下面这样的循环。
题目翻译来自NOCOW。
USACO Training Section 1.5
产生长度为5的回文数:
for (d1 = 1; d1 <= 9; d1+=2) { // 只有奇数才会是素数
for (d2 = 0; d2 <= 9; d2++) {
for (d3 = 0; d3 <= 9; d3++) {
palindrome = 10000*d1 + 1000*d2 +100*d3 + 10*d2 + d1;//(处理回文数...)
}
}
}
题意很简单,但是本蒟蒻是个死心眼,本来可以直接枚举回文数在判断的,可是蒟蒻就想用筛法把他写完(最后T拉一组),首先我们可以证明下偶数(大于二)为的回文数不可能是质数
//证明一下偶数位数的回文数都不是prime number(11除外)
//证明一下最难的8位数吧其他的同理
//设x=10000001i+1000010j+100100k+11000l(i为1-9的自然数,j,k,l为0-9的自然数)
//分解得x=11(909091i+90910j+9100k+1000l)
//又909091i+90910j+9100k+1000l>2
//∴11|x
//x必定为合数
//同理可得当回文数x的位数为偶数位时必有11|x当x/11>2时x必为合数
有啦这个性质就可以直接枚举奇数位的回文数
代码:
T啦一组的:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<map>
#include<cstdio>
using namespace std;
int n;
bool ispri[100000050];
bool pd (int x)
{
int a[25];
int sum=0;
while (x>0)
{
a[++sum]=x%10;
x/=10;
}
for(int i=1;i<=sum;i++)
{
if(a[i]!=a[sum-i+1])
return false ;
}
return true ;
}
int main()
{
int m;
scanf("%d%d",&m,&n);
for(int i=2;i<=n;i++)
{
if(!ispri[i])
for(int j=2*i;j<=n;j+=i)
{
ispri[j]=true ;
}
}
if(m%2==0) m++;
if(n%2==0) n--;
for(int i=m;i<=n;i+=2)
{
if(!ispri[i]&&pd(i))
{
printf("%d\n",i);
}
}
return 0;
}
正解::
#include<cstdio>
#include<cstring>
#include<iostream>
#include<string>
#include<cmath>
using namespace std;
int l,r,a[100];
bool p[100000001];
void make() //开始想写筛法,不过后来一算时间不大够,就用了一般判断。不想看筛法自行略过
{
p[1]=0; //把1标记为0
int q=(int)sqrt(r); //i循环到sqrt(r)
for (int i=2;i<=q;i++)
if (p[i]) //如果i是质数那么它所有的倍数标记为0.
for (int j=2;j<=r/i;j++) //2倍~r/i倍
p[i*j]=0; //标记
}
bool pd(int x) //一般质数判断,不解释
{
int q=(int)sqrt(x);
for (int i=2;i<=q;i++)
if (x%i==0)
return 0;
return 1;
}
void tab(int n,int t)
{
if (t>(n+1)/2) //如果不回文的部分填完了
{
int s=0; //预备输出
for (int i=1;i<=n/2;i++) //把填的数扩展成回文数
a[n-i+1]=a[i];
for (int i=1;i<=n;i++) //从数组转化为数
s=s*10+a[i];
if (s>r||s<l) //如果大了或小了就return(这你完全可以放在前面判断,效率更高)
return;
if (pd(s)) //如果s是质数
cout<<s<<endl; //输出
}
else
for (int i=(t==1);i<=9;i+=(t==1)+1)
//如果是第一位那么从1到9循环,否则从0到9循环;如果是第一位那么每次加2(质数),否则每次加1
{
a[t]=i; //记录
tab(n,t+1); //递归填下一位的数
}
}
int main()
{
cin>>l>>r; //读入l和r
memset(p,1,sizeof(p));
// make(); //这里注释掉了
for (int i=ceil(log10(l));i<=ceil(log10(r));i++) //针对i~j区间的数进行产生,ceil(log10(r))是r的位数
tab(i,1); //产生
}