面试问到的关于spring cloud理解和spring cloud与dubbo的区别详解

面试问到的关于spring cloud理解和spring cloud与dubbo的区别详解

今天下午面试被问到这个问题,当时没答上来,毕竟之前工作也都只是简单的使用,并没有真正去了解过两个之间的区别
晚上自己查了一些文档,有点感悟在这里写一下
首先两个都是国内比较火的微服务架构
先介绍一下微服务
微服务架构是一种架构模式,它将单一应用程序划分成一组小的服务,服务之间互相配合,达到最终的目的

优点是可以将繁杂的代码堆分解,每一个微服务实现单一的功能,并通过接口与其他服务沟通合作
每个微服务之间相互独立部署技术使用更加灵活
这里先介绍一下我比较熟悉的spring cloud ,它基于Spring Boot实现各种功能

核心为以下五个

1.Eureka 注册中心——Netflix Eureka 功能类似于dubbo的注册中心,比如zookeeper。

eureka是一个基于REST的服务,用于定位服务,以实现云端中间层服务发现和故障转移。服务注册与发现对于微服务架构来说是非常重要的,有了服务发现和注册,只需要使用服务的标识符,就可以访问到服务,而不需要修改服务
Eureka server提供服务注册和发现.
Eureka Server提供服务注册服务。各个服务提供者节点启动后,会在Eureka Server中进行注册,这样Eureka server中的服务存储可用信息并且可以直观的看到.
Service Provider服务提供方将自身服务注册到Eureka,从而使服务消费方能够找到。
Service Consumer服务消费方从Eureka获取注册服务列表,从而能够消费服务。

2.客服端负载均衡——Netflix Ribbon/Feign

为了提供并发量,有时同一个服务提供者可以部署多个。这个客户端在调用时要根据一定的负责均衡策略完成负载调用。
Ribbon是Netflix发布的云中间层服务开源项目,主要功能是提供客户端负载均衡算法。Ribbon客户端组件提供一系列完善的配置项,如,连接超时,重试等。
比如今天面试就问到了连接超时时间
负载均衡算法最常用的有随机RandomRule和轮询RoundRobinRule两种
代码网上有很多就不一一列出
Feign是一个声明式的Web Service客户端,它的目的就是让Web Service调用更加简单,相当于在Ribbon的基础上继续封装了一层,类似于springmvc在servlet的基础上做了一层封装
它 提供了HTTP请求的模板,通过编写简单的接口和插入注解,就可以定义好HTTP请求的参数、格式、地址等信息。会完全代理HTTP请求,
可插拔的注解支持,包括Feign注解和JAX-RS注解;
支持可插拔的HTTP编码器和解码器;
支持Hystrix和它的Fallback;
支持Ribbon的负载均衡;
支持HTTP请求和响应的压缩。
这看起来有点像我们springmvc模式的Controller层的RequestMapping映射 Feign是用@FeignClient来映射服务的。

3.服务网关——Netflix Zuul

Zuul 是netflix开源的一个API Gateway 服务器, 本质上是一个web servlet应用。
Zuul 在云平台上提供动态路由,监控,弹性,安全等边缘服务的框架。Zuul 相当于是设备和 Netflix 流应用的 Web 网站后端所有请求的前门,也要注册入Eureka.
前面这一层俗称为“网关层”,其存在意义在于,将"1对N"问题 转换成了"1对1”问题(路由),同时在请求到达真正的微服务之前,可以做一些预处理(过滤),比如:来源合法性检测,权限校验,反爬虫之类…

4.断路器——Netflix Hystrix

在理想状态下,一个应用依赖的服务都是健康可用的,我们可以正常的处理所有的请求,但是天有不测风云
当微服务中某一个服务出问题的时候发生延迟,所有的请求都阻塞在依赖的服务,大多数服务器的线程池就出现阻塞(BLOCK),影响整个线上服务的稳定性
高并发的依赖失败时如果没有隔离措施,当前应用服务就有被拖垮的风险
Hystrix是保证微服务群健壮框架,做了隔离,熔断,降级等操作.最终达到不会由于某一个服务出问题而导致雪崩现象,让整体群死掉.

资源隔离(限流):

包括线程池隔离和信号量隔离,限制调用分布式服务的资源使用,某一个调用的服务出现问题不会影响其他服务调用。
(1) 线程池隔离模式:使用一个线程池来存储当前请求,线程池对请求作处理,设置任务返回处理超时时间,堆积的请求先入线程池队列。这种方式要为每个依赖服务申请线程池,有一定的资源消耗,好处是可以应对突发流量(大量流量来临时,处理不完可将数据存储到线程池队里慢慢处理)
(2)信号量隔离模式:使用一个原子计数器(或信号量)记录当前有多少个线程在运行,请求来先判断计数器的数值,若超过设置的最大线程个数则丢弃该类型的新请求,若不超过则执行计数操作请求来计数器+1,请求返回计数器-1。这种方式是严格的控制线程且立即返回模式,无法应对突发流量(流量洪峰来临时,处理的线程超过数量,其他的请求会直接返回,不继续去请求依赖的服务)

融断:

当失败率达到阀值自动触发降级(如因网络故障/超时造成的失败率高),熔断器触发的快速失败会进行快速恢复。
正常情况下,断路器处于关闭状态(Closed),
如果调用持续出错或者超时,电路被打开进入熔断状态(Open),后续一段时间内的所有调用都会被拒绝(Fail Fast),
一段时间以后,保护器会尝试进入半熔断状态(Half-Open),允许少量请求进来尝试,
如果调用仍然失败,则回到熔断状态
如果调用成功,则回到电路闭合状态;

降级机制:

超时降级、资源不足时(线程或信号量)降级,降级后可以配合降级接口返回托底数据。
所谓降级,就是当某个服务熔断之后,服务器将不再被调用,此时客户端可以自己准备一个本地的fallback回调,返回一个缺省值。
这样做,虽然服务水平下降,但好歹可用,比直接挂掉要强,当然这也要看适合的业务场景。

缓存:

提供了请求缓存、请求合并实现。

5.分布式配置——Spring Cloud Config

微服务架构中,每个项目都有一个yml配置,管理起来麻烦。spring cloud config主要用来管理这些yml
它支持配置服务放在配置服务的内存中(即本地),也支持放在远程Git仓库中。在spring cloud config 组件中,分两个角色,一是config server,二是config client。
今天由于时间有限先介绍下概念,改天再具体将代码实现

接下来说说两者区别

Dubbo,是阿里巴巴服务化治理的核心框架,在中国被广泛使用;
Spring Cloud 是Spring的产品,他们专注开发出通用、开源、稳健的开源框架

对比了网上一些说法总的来说

社区活跃度spring更加活跃
Dubbo有中文文档对中国开发者来说更加友好
Dubbo只是实现了服务治理,而Spring Cloud分别覆盖了微服务架构下的方方面面,服务治理只是其中的一个方面,一定程度来说,Dubbo只是Spring Cloud Netflix中的一个子集。但是在选择框架上,方案完整度恰恰是一个需要重点关注的内容。
Dubbo晋升为Apache顶级项目对Dubbo将进一步的优化,潜力无限
并且两者之上还有一个进化版本
spring-cloud-dubbo

详情见Spring Cloud中国社区

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值