elasticsearch7语法

本文详细介绍了Elasticsearch(ES)从ES6到ES7的变化,包括type的移除,以及在ES7中默认使用_doc作为type。讨论了如何创建、查看和删除索引,以及配置映射和字段属性,如数据类型、索引和存储设置。还展示了如何新增、修改和删除数据,以及进行了基本查询和匹配查询操作。强调了ES的动态映射功能,能够根据输入数据自动添加映射。
摘要由CSDN通过智能技术生成
  • es6时,官方就提到了es7会删除type,并且es6时已经规定每一个index只能有一个type。
  • 在es7中使用默认的_doc作为type,官方说在8.x版本会彻底移除type。
  • api请求方式也发送变化,对索引的文档进行操作的时候,默认使用的Type是 _doc 如获得某索引的某ID的文档:GET index/_doc/id其中index和id为具体的值

在这里插入图片描述

创建索引

PUT goods
{
  "settings": {
    "number_of_shards": 3, -- 设置分片
    "number_of_replicas": 2  -- 设置副本
  }
}

查看索引

GET goods

返回:

{
  "goods" : {
    "aliases" : { },
    "mappings" : { },
    "settings" : {
      "index" : {
        "routing" : {
          "allocation" : {
            "include" : {
              "_tier_preference" : "data_content"
            }
          }
        },
        "number_of_shards" : "3",
        "provided_name" : "goods",
        "creation_date" : "1656312544717",
        "number_of_replicas" : "2",
        "uuid" : "xAf9P48pQNyHVmZ87MLu0Q",
        "version" : {
          "created" : "7170199"
        }
      }
    }
  }
}

删除索引

DELETE goods

返回:

{
  "acknowledged" : true
}

配置映射

PUT goods/_mapping
{
  "properties":{
    "name":{
      "type":"text",
      "analyzer":"ik_max_word"
    },
    "images":{
      "type":"keyword",
      "index":"false"
    },
    "price":{
      "type":"integer"
    }
  }
}

查看映射:

GET /goods/_mappings

字段属性详解

  1. type

Elasticsearch中支持的数据类型非常丰富,我们说几个关键的:

String类型,又分两种:
text:可分词,不可参与聚合
keyword:不可分词,数据会作为完整字段进行匹配,可以参与聚合
Numerical:数值类型,分两类
基本数据类型:long、interger、short、byte、double、float、half_float
浮点数的高精度类型:scaled_float
需要指定一个精度因子,比如10或100。elasticsearch会把真实值乘以这个因子后存储,取出时再还原。
Date:日期类型
elasticsearch可以对日期格式化为字符串存储,但是建议我们存储为毫秒值,存储为long,节省空间。
  1. index

index影响字段的索引情况。

  • true:字段会被索引,则可以用来进行搜索。默认值就是true
  • false:字段不会被索引,不能用来搜索

index的默认值就是true,也就是说你不进行任何配置,所有字段都会被索引。
但是有些字段是我们不希望被索引的,比如商品的图片信息,就需要手动设置index为false。

  1. store

是否将数据进行额外存储。
在学习lucene和solr时,我们知道如果一个字段的store设置为false,那么在文档列表中就不会有这个字段的值,用户的搜索结果中不会显示出来。但是在Elasticsearch中,即便store设置为false,也可以搜索到结果。原因是Elasticsearch在创建文档索引时,会将文档中的原始数据备份,保存到一个叫做_source 的属性中。而且我们可以通过过滤_source 来选择哪些要显示,哪些不显示。
而如果设置store为true,就会在_source 以外额外存储一份数据,多余,因此一般我们都会将store设置为false,事实上,store的默认值就是false。

  1. boost

激励因子,这个与lucene中一样
其它的不再一一讲解,用的不多,大家参考官方文档

新增数据(id不指定)

POST /goods/_doc
{
  "name":"小米手机11",
  "images":"images.img",
  "price":1999
}

查看数据:

GET /goods/_search
{
  "query":{
    "match_all": {}
  }
}

结果:

{
  "took" : 5,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "goods",
        "_type" : "_doc",
        "_id" : "_x39o4EBF-IfmNkUo3Dz",
        "_score" : 1.0,
        "_source" : {
          "name" : "小米手机11",
          "images" : "images.img",
          "price" : 1999
        }
      }
    ]
  }
}

新增数据(指定id)

POST /goods/_doc/1
{
  "name":"苹果手机iphone14",
  "images":"images.img",
  "price":9999
}

查询结果
在这里插入图片描述

ES可以自动添加映射

Elasticsearch非常智能,你不需要给索引库设置任何mapping映射,它也可以根据你输入的数据来判断类型,动态添加数据映射。

POST /goods/_doc
{
  "name":"小米手机11",
  "images":"images.img",
  "price":1999,
  "brand":"小米" --索引库中未设置此映射
}

查询结果

 {
   "_index" : "goods",
     "_type" : "_doc",
     "_id" : "Ah0NpIEBF-IfmNkUBHG9",
     "_score" : 1.0,
     "_source" : {
       "name" : "小米手机11",
       "images" : "images.img",
       "price" : 1999,
       "brand" : "小米"
     }
   }

查看mapping,发现brand已经自动添加映射

{
  "goods" : {
    "mappings" : {
      "properties" : {
        "brand" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
        "images" : {
          "type" : "keyword",
          "index" : false
        },
        "name" : {
          "type" : "text",
          "analyzer" : "ik_max_word"
        },
        "price" : {
          "type" : "integer"
        }
      }
    }
  }
}

修改和删除数据

指定id为修改,无id则新增

POST goods/_doc/1
{
  "name":"苹果手机iphone14",
  "images":"images/image/image.img",
  "price":9999
}

删除

DELETE goods/_doc/1

基本查询

语法:

GET /索引库名/_search
{
	"query":{
		"查询类型":{
			"查询条件":"查询条件值"
		}
	}
}

这里的query代表一个查询对象,里面可以有不同的查询属性
查询类型:
例如: match_all , match , term , range 等等
查询条件:查询条件会根据类型的不同,写法也有差异,后面详细讲解

  1. 查询所有:
GET goods/_search
{
  "query":{
    "match_all": {}
  }
}

query :代表查询对象
match_all :代表查询所有

结果:

{
  "took" : 706,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "goods",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 1.0,
        "_source" : {
          "name" : "苹果手机iphone12mini",
          "images" : "images.img",
          "price" : 9999
        }
      },
      {
        "_index" : "goods",
        "_type" : "_doc",
        "_id" : "Ah0NpIEBF-IfmNkUBHG9",
        "_score" : 1.0,
        "_source" : {
          "name" : "小米手机11",
          "images" : "images.img",
          "price" : 1999,
          "brand" : "小米"
        }
      }
    ]
  }
}

took:查询花费时间,单位是毫秒
time_out:是否超时
_shards:分片信息
hits:搜索结果总览对象
total:搜索到的总条数
max_score:所有结果中文档得分的最高分
hits:搜索结果的文档对象数组,每个元素是一条搜索到的文档信息
_index:索引库
_type:文档类型
_id:文档id
_score:文档得分
_source:文档的源数据

  1. 匹配查询(match)
GET goods/_search
{
  "query":{
    "match": {
      "name": "苹果"
    }
  }
}

or关系
match 类型查询,会把查询条件进行分词,然后进行查询,多个词条之间是or的关系
可以指定为and关系:

GET goods/_search
{
  "query":{
    "match": {
      "name": {
        "query": "苹果手机",
        "operator": "and"
      }
    }
  }
}

注意:or和and之间?
在 or 与 and 间二选一有点过于非黑即白。 如果用户给定的条件分词后有 5 个查询词项,想查找只包含其中 4个词的文档,该如何处理?将 operator 操作符参数设置成 and 只会将此文档排除。
有时候这正是我们期望的,但在全文搜索的大多数应用场景下,我们既想包含那些可能相关的文档,同时又排除那些不太相关的。换句话说,我们想要处于中间某种结果。
match 查询支持 minimum_should_match 最小匹配参数, 这让我们可以指定必须匹配的词项数用来表示一个文档是否相关。我们可以将其设置为某个具体数字,更常用的做法是将其设置为一个百分数,因为我们无法控制用户搜索时输入的单词数量:

GET goods/_search
{
  "query":{
    "match": {
      "name": {
        "query": "苹果手机",
        "minimum_should_match": "75%"
      }
    }
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值