- es6时,官方就提到了es7会删除type,并且es6时已经规定每一个index只能有一个type。
- 在es7中使用默认的_doc作为type,官方说在8.x版本会彻底移除type。
- api请求方式也发送变化,对索引的文档进行操作的时候,默认使用的Type是 _doc 如获得某索引的某ID的文档:GET index/_doc/id其中index和id为具体的值
创建索引
PUT goods
{
"settings": {
"number_of_shards": 3, -- 设置分片
"number_of_replicas": 2 -- 设置副本
}
}
查看索引
GET goods
返回:
{
"goods" : {
"aliases" : { },
"mappings" : { },
"settings" : {
"index" : {
"routing" : {
"allocation" : {
"include" : {
"_tier_preference" : "data_content"
}
}
},
"number_of_shards" : "3",
"provided_name" : "goods",
"creation_date" : "1656312544717",
"number_of_replicas" : "2",
"uuid" : "xAf9P48pQNyHVmZ87MLu0Q",
"version" : {
"created" : "7170199"
}
}
}
}
}
删除索引
DELETE goods
返回:
{
"acknowledged" : true
}
配置映射
PUT goods/_mapping
{
"properties":{
"name":{
"type":"text",
"analyzer":"ik_max_word"
},
"images":{
"type":"keyword",
"index":"false"
},
"price":{
"type":"integer"
}
}
}
查看映射:
GET /goods/_mappings
字段属性详解
- type
Elasticsearch中支持的数据类型非常丰富,我们说几个关键的:
String类型,又分两种:
text:可分词,不可参与聚合
keyword:不可分词,数据会作为完整字段进行匹配,可以参与聚合
Numerical:数值类型,分两类
基本数据类型:long、interger、short、byte、double、float、half_float
浮点数的高精度类型:scaled_float
需要指定一个精度因子,比如10或100。elasticsearch会把真实值乘以这个因子后存储,取出时再还原。
Date:日期类型
elasticsearch可以对日期格式化为字符串存储,但是建议我们存储为毫秒值,存储为long,节省空间。
- index
index影响字段的索引情况。
- true:字段会被索引,则可以用来进行搜索。默认值就是true
- false:字段不会被索引,不能用来搜索
index的默认值就是true,也就是说你不进行任何配置,所有字段都会被索引。
但是有些字段是我们不希望被索引的,比如商品的图片信息,就需要手动设置index为false。
- store
是否将数据进行额外存储。
在学习lucene和solr时,我们知道如果一个字段的store设置为false,那么在文档列表中就不会有这个字段的值,用户的搜索结果中不会显示出来。但是在Elasticsearch中,即便store设置为false,也可以搜索到结果。原因是Elasticsearch在创建文档索引时,会将文档中的原始数据备份,保存到一个叫做_source 的属性中。而且我们可以通过过滤_source 来选择哪些要显示,哪些不显示。
而如果设置store为true,就会在_source 以外额外存储一份数据,多余,因此一般我们都会将store设置为false,事实上,store的默认值就是false。
- boost
激励因子,这个与lucene中一样
其它的不再一一讲解,用的不多,大家参考官方文档
新增数据(id不指定)
POST /goods/_doc
{
"name":"小米手机11",
"images":"images.img",
"price":1999
}
查看数据:
GET /goods/_search
{
"query":{
"match_all": {}
}
}
结果:
{
"took" : 5,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "goods",
"_type" : "_doc",
"_id" : "_x39o4EBF-IfmNkUo3Dz",
"_score" : 1.0,
"_source" : {
"name" : "小米手机11",
"images" : "images.img",
"price" : 1999
}
}
]
}
}
新增数据(指定id)
POST /goods/_doc/1
{
"name":"苹果手机iphone14",
"images":"images.img",
"price":9999
}
查询结果
ES可以自动添加映射
Elasticsearch非常智能,你不需要给索引库设置任何mapping映射,它也可以根据你输入的数据来判断类型,动态添加数据映射。
POST /goods/_doc
{
"name":"小米手机11",
"images":"images.img",
"price":1999,
"brand":"小米" --索引库中未设置此映射
}
查询结果
{
"_index" : "goods",
"_type" : "_doc",
"_id" : "Ah0NpIEBF-IfmNkUBHG9",
"_score" : 1.0,
"_source" : {
"name" : "小米手机11",
"images" : "images.img",
"price" : 1999,
"brand" : "小米"
}
}
查看mapping,发现brand已经自动添加映射
{
"goods" : {
"mappings" : {
"properties" : {
"brand" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"images" : {
"type" : "keyword",
"index" : false
},
"name" : {
"type" : "text",
"analyzer" : "ik_max_word"
},
"price" : {
"type" : "integer"
}
}
}
}
}
修改和删除数据
指定id为修改,无id则新增
POST goods/_doc/1
{
"name":"苹果手机iphone14",
"images":"images/image/image.img",
"price":9999
}
删除
DELETE goods/_doc/1
基本查询
语法:
GET /索引库名/_search
{
"query":{
"查询类型":{
"查询条件":"查询条件值"
}
}
}
这里的query代表一个查询对象,里面可以有不同的查询属性
查询类型:
例如: match_all , match , term , range 等等
查询条件:查询条件会根据类型的不同,写法也有差异,后面详细讲解
- 查询所有:
GET goods/_search
{
"query":{
"match_all": {}
}
}
query :代表查询对象
match_all :代表查询所有
结果:
{
"took" : 706,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "goods",
"_type" : "_doc",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"name" : "苹果手机iphone12mini",
"images" : "images.img",
"price" : 9999
}
},
{
"_index" : "goods",
"_type" : "_doc",
"_id" : "Ah0NpIEBF-IfmNkUBHG9",
"_score" : 1.0,
"_source" : {
"name" : "小米手机11",
"images" : "images.img",
"price" : 1999,
"brand" : "小米"
}
}
]
}
}
took:查询花费时间,单位是毫秒
time_out:是否超时
_shards:分片信息
hits:搜索结果总览对象
total:搜索到的总条数
max_score:所有结果中文档得分的最高分
hits:搜索结果的文档对象数组,每个元素是一条搜索到的文档信息
_index:索引库
_type:文档类型
_id:文档id
_score:文档得分
_source:文档的源数据
- 匹配查询(match)
GET goods/_search
{
"query":{
"match": {
"name": "苹果"
}
}
}
or关系
match 类型查询,会把查询条件进行分词,然后进行查询,多个词条之间是or的关系
可以指定为and关系:
GET goods/_search
{
"query":{
"match": {
"name": {
"query": "苹果手机",
"operator": "and"
}
}
}
}
注意:or和and之间?
在 or 与 and 间二选一有点过于非黑即白。 如果用户给定的条件分词后有 5 个查询词项,想查找只包含其中 4个词的文档,该如何处理?将 operator 操作符参数设置成 and 只会将此文档排除。
有时候这正是我们期望的,但在全文搜索的大多数应用场景下,我们既想包含那些可能相关的文档,同时又排除那些不太相关的。换句话说,我们想要处于中间某种结果。
match 查询支持 minimum_should_match 最小匹配参数, 这让我们可以指定必须匹配的词项数用来表示一个文档是否相关。我们可以将其设置为某个具体数字,更常用的做法是将其设置为一个百分数,因为我们无法控制用户搜索时输入的单词数量:
GET goods/_search
{
"query":{
"match": {
"name": {
"query": "苹果手机",
"minimum_should_match": "75%"
}
}
}
}