杨辉三角的运用-Ⅲ

背景

   在昏昏欲睡的概率论的课堂上,我只看见老师的嘴巴一张一合,却完全听不清老师讲的内容。我环顾四周,大家也都用尽了力气抬头听课。就这样在朦朦胧胧中等待着课堂的结束,突然听到老师说了一句 P ( A ⋂ B ⋂ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A ⋃ C ) − P ( C ⋃ B ) − P ( A ⋃ B ) + P ( A ⋃ B ⋃ C ) ① P(A \bigcap B \bigcap C) = P(A) + P(B) + P(C) - P(A \bigcup C) - P(C \bigcup B) - P(A \bigcup B) + P(A \bigcup B \bigcup C)① P(ABC)=P(A)+P(B)+P(C)P(AC)P(CB)P(AB)+P(ABC)。我一个激灵,敏感的思绪意识到事情不对,在经过两节课的冥思苦想之下,终于理清了整件事的来龙去脉。

切入正题

   简单学过概率论的我们,知道这么一个小巧的公式: P ( A ⋂ B ) = P ( A ) + P ( B ) − P ( A ⋃ B ) P(A \bigcap B ) = P(A) + P(B) - P(A \bigcup B) P(AB)=P(A)+P(B)P(AB)。假如我们将这个具有两个变量的公式看成二维拆解公式,那三个变量的公式就自然可以看成三维拆解公式。我们把等式左边那一项移到右端,就可以看到一个这个公式的全貌: − P ( A ⋂ B ) + P ( A ) + P ( B ) − P ( A ⋃ B ) = 0 -P(A \bigcap B ) + P(A) + P(B) - P(A \bigcup B) = 0 P(AB)+P(A)+P(B)P(AB)=0,假如再把三维公式拿下来,将等式左端那一项移到等式右端,我们可以看到: − P ( A ⋂ B ⋂ C ) + P ( A ) + P ( B ) + P ( C ) − P ( A ⋃ C ) − P ( C ⋃ B ) − P ( A ⋃ B ) + P ( A ⋃ B ⋃ C ) = 0 -P(A \bigcap B \bigcap C) + P(A) + P(B) + P(C) - P(A \bigcup C) - P(C \bigcup B) - P(A \bigcup B) + P(A \bigcup B \bigcup C) = 0 P(ABC)+P(A)+P(B)+P(C)P(AC)P(CB)P(AB)+P(ABC)=0。可能屏幕前茫然的你仍然不知所措,但是请尽情地相信“啊哈”的意志!我们把同等类型的概率看成一个整体,即: P ( A ) , P ( B ) , P ( C ) P(A) ,P(B), P(C) P(A),P(B),P(C)等括号里类型相同的概率看成一个整体,我们就可以看出如下的形式: { − 1 , 2 , − 1 − 1 , 3 , − 3 , 1 … \left\{\begin{array}{c} -1,2,-1\\-1,3,-3,1\\ \dots \end{array} \right. 1,2,11,3,3,1我们已经能够预想出接下来的走向: { − 1 , 2 , − 1 − 1 , 3 , − 3 , 1 − 1 , 4 , − 6 , 4 , − 1 − 1 , 5 , − 10 , 10 , − 5 , 1 … \left\{\begin{array}{c} -1,2,-1\\-1,3,-3,1\\ -1,4,-6,4,-1\\-1,5,-10,10,-5,1\\\dots \end{array} \right. 1,2,11,3,3,11,4,6,4,11,5,10,10,5,1这不就是杨辉三角的变形嘛!接下来,我们给出证明。

证明

  下面我们给出证明:
首先利用 ( 1 − 1 ) n = C n 0 ( − 1 ) 0 + C n 1 ( − 1 ) 1 + ⋯ + C n n ( − 1 ) n (1-1)^n = C_n^0(-1)^0 + C_n^1(-1)^1 +\dots +C_n^n(-1)^n (11)n=Cn0(1)0+Cn1(1)1++Cnn(1)n = 0 = 0 =0,两边同时乘以一个(-1)式子仍然保持成立,就有了如下的式子: C n 0 ( − 1 ) 1 + C n 1 ( − 1 ) 2 + ⋯ + C n n ( − 1 ) n + 1 = 0 C_n^0(-1)^1 + C_n^1(-1)^2 +\dots +C_n^n(-1)^{n+1}= 0 Cn0(1)1+Cn1(1)2++Cnn(1)n+1=0可知,在上面所列出的杨辉三角的变形式中每一行之和为零。学过数电的小同学们都知道n个变量的相交项是一个最小项,它可以被等式①右端任意一个相并块所包含,所以等式右端的每一个分量都暗示着这个最小项出现一次,那么我们就可以将每一项看成一个数字1,那么利用变形后的杨辉三角式可以看出公式的大致的正确性。
  接下来我们要证明,在相加的过程中,除了n变量的相交项可以保留一个以外,其余的任意的m(m<n)个变量的相交项经过运算之后和为零。如图
举个例子:如图中的 A B C ′ ABC' ABC块,由于其被 A , B , A A ,B, A A,B,A ⋃ \bigcup C , B C, B C,B ⋃ \bigcup C , C, C,另外还有一个 A ⋃ B ⋃ C A \bigcup B \bigcup C ABC所包含,所以在对应的概率分量上标为1。所得到的和依然为零。考虑有n个自变量,m个自变量相交块的和为: ( C n 1 − C n − m 1 ) (C_n^1-C^1_{n-m}) (Cn1Cnm1) - ( C n 2 − C n − m 2 ) (C_n^2-C_{n-m}^2) (Cn2Cnm2) … \dots ( − 1 ) n + 1 ( C n n − C n − m n ) (-1)^{n+1}(C_n^n-C_{n-m}^n) (1)n+1(CnnCnmn),我们先定义: C m n = 0 ( m < n ) C_m^n = 0(m < n) Cmn=0(m<n), 可得将上述式子整理后为: ( C n 1 − C n 2 + C n 3 − ⋯ + ( − 1 ) n + 1 C n n ) − ( C n − m 1 − C n − m 2 + ⋯ + ( − 1 ) n − m + 1 C n − m n − m ) (C_n^1-C_n^2 +C_n^3 -\dots +(-1)^{n+1}C_n^n)-(C_{n-m}^1-C_{n-m}^2 +\dots +(-1)^{n-m+1}C_{n-m}^{n-m}) (Cn1Cn2+Cn3+(1)n+1Cnn)(Cnm1Cnm2++(1)nm+1Cnmnm),我们由杨辉三角的变形式可知,其之差是为零的。

公式

  于是我们可以得出下列公式: P ( A 1 ⋂ A 2 ⋂ A 3 ⋯ ⋂ A n ) = ( − 1 ) 0 ( P ( A 1 ) + P ( A 2 ) + P ( A 3 ) … P ( A n ) ) + ( − 1 ) 1 ( P ( A 1 ⋃ A 2 ) + P ( A 1 ⋃ A 3 ) + P ( A 2 ⋃ A 3 ) ⋯ + P ( A n − 1 ⋃ A n ) ) + ( − 1 ) 2 ( P ( A 1 ⋃ A 2 ⋃ A 3 ) + P ( A 1 ⋃ A 2 ⋃ A 4 ) + P ( A 1 ⋃ A 2 ⋃ A 5 ) + ⋯ + P ( A n − 2 ⋃ A n − 1 ⋃ A n ) P(A_1 \bigcap A_2 \bigcap A_3 \dots \bigcap A_n) = (-1)^0(P(A_1) + P(A_2) + P(A_3)\dots P(A_n)) + (-1)^1(P(A_1 \bigcup A_2) + P(A_1 \bigcup A_3) + P(A_2 \bigcup A_3) \dots+P(A_{n-1} \bigcup A_n) )+ (-1)^2(P(A_1 \bigcup A_2 \bigcup A_3)+P(A_1 \bigcup A_2 \bigcup A_4)+P(A_1 \bigcup A_2 \bigcup A_5)+\dots +P(A_{n-2} \bigcup A_{n-1} \bigcup A_n) P(A1A2A3An)=(1)0(P(A1)+P(A2)+P(A3)P(An))+(1)1(P(A1A2)+P(A1A3)+P(A2A3)+P(An1An))+(1)2(P(A1A2A3)+P(A1A2A4)+P(A1A2A5)++P(An2An1An) ⋯ + ( − 1 ) n − 1 ( P ( A 1 ⋃ A 2 ⋃ A 3 ⋯ ⋃ A n ) ) \dots +(-1)^{n-1}(P(A_1 \bigcup A_2 \bigcup A_3 \dots \bigcup A_n)) +(1)n1(P(A1A2A3An))

结语

   这次博客在上一年就有写的念头,但是迟迟未能付诸实践,直到今天,才把它又拿起来写了出来。希望大家多多拍砖!

  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值