故事背景
故事发生在我考完试后的第二天,我正躺在床上悠闲着耍着我的最右,突然一个神秘的黑色图片映入我的眼帘。我盯着看了一段时间,发现这明显是在挑衅我啊,我好歹也是经历过高考的人的,你就拿这种题愚弄我?不过,十几分钟下来,我不得不承认我的九年义务教育似乎并不是很成功…
如图:
没错兄弟们,我躺在床上辗转反侧,迟迟没有心情去刷下一个视频,没办法,只好拿出了我的杀手锏,没错,就是建系,把坐标都写出来,斜率一算,交点坐标一求,这题稳稳地就是在交智商税啊。但是啊,当我嘴角微微一扬,准备着再刷个小视频奖励一下自己的时候,我才发现,这另有玄机…
问题抽象
我们换个图来看:
对于这种在三角形中有一个点,连接三个顶点到中间这个点,所形成的
A
,
B
,
C
,
D
,
E
,
F
A,B,C,D,E,F
A,B,C,D,E,F之间有什么关系嘛,这就来分析一下。
我们在高中学过正弦定理,那么我们就以这个为切入点。
由正弦定理我们可以知道:
a
s
i
n
(
B
)
=
b
s
i
n
(
A
)
\frac{a}{sin(B)} = \frac{b}{sin(A)}
sin(B)a=sin(A)b,
a
s
i
n
(
E
)
=
c
s
i
n
(
F
)
\frac{a}{sin(E)} = \frac{c}{sin(F)}
sin(E)a=sin(F)c,两个等式,我们可以知道:
b
∗
s
i
n
(
B
)
s
i
n
(
A
)
=
c
∗
s
i
n
(
E
)
s
i
n
(
F
)
b*\frac{sin(B)}{sin(A)} = c*\frac{sin(E)}{sin(F)}
b∗sin(A)sin(B)=c∗sin(F)sin(E)。在最下面那个三角形中,我们可以得出:
c
s
i
n
(
C
)
=
b
s
i
n
(
D
)
\frac{c}{sin(C)} = \frac{b}{sin(D)}
sin(C)c=sin(D)b,可以得出:
b
c
=
s
i
n
(
D
)
s
i
n
(
C
)
\frac{b}{c} = \frac{sin(D)}{sin(C)}
cb=sin(C)sin(D),并且由上面的式子我们已经得到:
b
c
=
s
i
n
(
A
)
s
i
n
(
E
)
s
i
n
(
B
)
s
i
n
(
F
)
\frac{b}{c} = \frac{sin(A)sin(E)}{sin(B)sin(F)}
cb=sin(B)sin(F)sin(A)sin(E), 将两个式子联立到一起,可以得到:
s
i
n
(
D
)
s
i
n
(
B
)
s
i
n
(
F
)
=
s
i
n
(
A
)
s
i
n
(
E
)
s
i
n
(
C
)
sin(D)sin(B)sin(F) = sin(A)sin(E)sin(C)
sin(D)sin(B)sin(F)=sin(A)sin(E)sin(C), 可以看出,对这个大三角形分割后的小三角形,假如我们中间的点看成一个旋转点,当小三角形进行旋转时,
A
,
E
,
C
a
n
d
B
,
D
,
F
A,E,C and B,D,F
A,E,CandB,D,F这两组是在同一位置上,即三角形的左底角和右底角。
延申
那么我们可不可以把这个发现延伸一下,即是不是n边形都有这个性质呢?答案是肯定的。我们以四边形为例,阐述一下如何从三角形演推到四边形。如图:
由三角形的例子,我们知道,三角形是简单的把
c
c
c看作为零而已,并且
s
i
n
(
D
)
=
s
i
n
(
E
)
sin(D) = sin(E)
sin(D)=sin(E)。从这个四边形中,我们可以得出:
b
s
i
n
(
D
)
=
c
s
i
n
(
C
)
\frac{b}{sin(D)} = \frac{c}{sin(C)}
sin(D)b=sin(C)c,
c
s
i
n
(
F
)
=
d
s
i
n
(
E
)
\frac{c}{sin(F)} = \frac{d}{sin(E)}
sin(F)c=sin(E)d, 可以得出;
b
∗
s
i
n
(
C
)
s
i
n
(
D
)
=
d
∗
s
i
n
(
F
)
s
i
n
(
E
)
b*\frac{sin(C)}{sin(D)} = d*\frac{sin(F)}{sin(E)}
b∗sin(D)sin(C)=d∗sin(E)sin(F), 由于
s
i
n
(
D
)
=
s
i
n
(
E
)
sin(D) = sin(E)
sin(D)=sin(E),得出
b
d
=
s
i
n
(
F
)
s
i
n
(
C
)
\frac{b}{d} = \frac{sin(F)}{sin(C)}
db=sin(C)sin(F), 这和我们上面所说的三角形的公式是相同的,说明,三角形是四边形的简化。而四边形中,这个关系的完整形态是:
b
d
=
s
i
n
(
D
)
s
i
n
(
F
)
s
i
n
(
E
)
s
i
n
(
C
)
\frac{b}{d} = \frac{sin(D)sin(F)}{sin(E)sin(C)}
db=sin(E)sin(C)sin(D)sin(F), 仅仅比三角形中的关系式多了一个:
s
i
n
(
D
)
s
i
n
(
E
)
\frac{sin(D)}{sin(E)}
sin(E)sin(D), 再将这个公式代入上述:
b
d
=
s
i
n
(
A
)
s
i
n
(
G
)
s
i
n
(
B
)
s
i
n
(
H
)
\frac{b}{d} = \frac{sin(A)sin(G)}{sin(B)sin(H)}
db=sin(B)sin(H)sin(A)sin(G), 代入得:
s
i
n
(
A
)
s
i
n
(
G
)
s
i
n
(
E
)
s
i
n
(
C
)
=
s
i
n
(
B
)
s
i
n
(
H
)
s
i
n
(
D
)
s
i
n
(
F
)
sin(A)sin(G)sin(E)sin(C) = sin(B)sin(H)sin(D)sin(F)
sin(A)sin(G)sin(E)sin(C)=sin(B)sin(H)sin(D)sin(F)。五边形,也可以由四边形如此推出。接下来,一次次得推演可以推到n边形,均满足这个恒等式。