一个由三角形引出的乘积恒等式

故事背景

  故事发生在我考完试后的第二天,我正躺在床上悠闲着耍着我的最右,突然一个神秘的黑色图片映入我的眼帘。我盯着看了一段时间,发现这明显是在挑衅我啊,我好歹也是经历过高考的人的,你就拿这种题愚弄我?不过,十几分钟下来,我不得不承认我的九年义务教育似乎并不是很成功…
如图:在这里插入图片描述
没错兄弟们,我躺在床上辗转反侧,迟迟没有心情去刷下一个视频,没办法,只好拿出了我的杀手锏,没错,就是建系,把坐标都写出来,斜率一算,交点坐标一求,这题稳稳地就是在交智商税啊。但是啊,当我嘴角微微一扬,准备着再刷个小视频奖励一下自己的时候,我才发现,这另有玄机…

问题抽象

  我们换个图来看:
在这里插入图片描述
对于这种在三角形中有一个点,连接三个顶点到中间这个点,所形成的 A , B , C , D , E , F A,B,C,D,E,F A,B,C,D,E,F之间有什么关系嘛,这就来分析一下。
我们在高中学过正弦定理,那么我们就以这个为切入点。
由正弦定理我们可以知道: a s i n ( B ) = b s i n ( A ) \frac{a}{sin(B)} = \frac{b}{sin(A)} sin(B)a=sin(A)b, a s i n ( E ) = c s i n ( F ) \frac{a}{sin(E)} = \frac{c}{sin(F)} sin(E)a=sin(F)c,两个等式,我们可以知道: b ∗ s i n ( B ) s i n ( A ) = c ∗ s i n ( E ) s i n ( F ) b*\frac{sin(B)}{sin(A)} = c*\frac{sin(E)}{sin(F)} bsin(A)sin(B)=csin(F)sin(E)。在最下面那个三角形中,我们可以得出: c s i n ( C ) = b s i n ( D ) \frac{c}{sin(C)} = \frac{b}{sin(D)} sin(C)c=sin(D)b,可以得出: b c = s i n ( D ) s i n ( C ) \frac{b}{c} = \frac{sin(D)}{sin(C)} cb=sin(C)sin(D),并且由上面的式子我们已经得到: b c = s i n ( A ) s i n ( E ) s i n ( B ) s i n ( F ) \frac{b}{c} = \frac{sin(A)sin(E)}{sin(B)sin(F)} cb=sin(B)sin(F)sin(A)sin(E), 将两个式子联立到一起,可以得到: s i n ( D ) s i n ( B ) s i n ( F ) = s i n ( A ) s i n ( E ) s i n ( C ) sin(D)sin(B)sin(F) = sin(A)sin(E)sin(C) sin(D)sin(B)sin(F)=sin(A)sin(E)sin(C), 可以看出,对这个大三角形分割后的小三角形,假如我们中间的点看成一个旋转点,当小三角形进行旋转时, A , E , C a n d B , D , F A,E,C and B,D,F A,E,CandBDF这两组是在同一位置上,即三角形的左底角和右底角。

延申

  那么我们可不可以把这个发现延伸一下,即是不是n边形都有这个性质呢?答案是肯定的。我们以四边形为例,阐述一下如何从三角形演推到四边形。如图:在这里插入图片描述
由三角形的例子,我们知道,三角形是简单的把 c c c看作为零而已,并且 s i n ( D ) = s i n ( E ) sin(D) = sin(E) sin(D)=sin(E)。从这个四边形中,我们可以得出: b s i n ( D ) = c s i n ( C ) \frac{b}{sin(D)} = \frac{c}{sin(C)} sin(D)b=sin(C)c, c s i n ( F ) = d s i n ( E ) \frac{c}{sin(F)} = \frac{d}{sin(E)} sin(F)c=sin(E)d, 可以得出; b ∗ s i n ( C ) s i n ( D ) = d ∗ s i n ( F ) s i n ( E ) b*\frac{sin(C)}{sin(D)} = d*\frac{sin(F)}{sin(E)} bsin(D)sin(C)=dsin(E)sin(F), 由于 s i n ( D ) = s i n ( E ) sin(D) = sin(E) sin(D)=sin(E),得出 b d = s i n ( F ) s i n ( C ) \frac{b}{d} = \frac{sin(F)}{sin(C)} db=sin(C)sin(F), 这和我们上面所说的三角形的公式是相同的,说明,三角形是四边形的简化。而四边形中,这个关系的完整形态是: b d = s i n ( D ) s i n ( F ) s i n ( E ) s i n ( C ) \frac{b}{d} = \frac{sin(D)sin(F)}{sin(E)sin(C)} db=sin(E)sin(C)sin(D)sin(F), 仅仅比三角形中的关系式多了一个: s i n ( D ) s i n ( E ) \frac{sin(D)}{sin(E)} sin(E)sin(D), 再将这个公式代入上述: b d = s i n ( A ) s i n ( G ) s i n ( B ) s i n ( H ) \frac{b}{d} = \frac{sin(A)sin(G)}{sin(B)sin(H)} db=sin(B)sin(H)sin(A)sin(G), 代入得: s i n ( A ) s i n ( G ) s i n ( E ) s i n ( C ) = s i n ( B ) s i n ( H ) s i n ( D ) s i n ( F ) sin(A)sin(G)sin(E)sin(C) = sin(B)sin(H)sin(D)sin(F) sin(A)sin(G)sin(E)sin(C)=sin(B)sin(H)sin(D)sin(F)。五边形,也可以由四边形如此推出。接下来,一次次得推演可以推到n边形,均满足这个恒等式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值