一个等差×等比数列连加式

背景

今天在做数字信号处理作业的时候,发现了这样的一种连加式。我们在高中学习了如何计算等比数列,那我们再引申一些,得到下面的一个数列。
  假如存在这么一个通项 a n = n m q n a_n = n^m q^n an=nmqn,我们定义一个连加式如下: S n = ∑ n = 0 N 0 − 1 a n S_n = \sum_{n = 0} ^ {N_0 - 1} a_n Sn=n=0N01an,这种问题应该如何解决呢?

引言

我们简要介绍一个公式,也很简单,如下: n m − ( n − 1 ) m = C m 1 n m − 1 + C m 2 n m − 2 ( − 1 ) 1 + C m 3 n m − 3 ( − 1 ) 2 + ⋯ + C m m n 0 ( − 1 ) m − 1 n^m - (n-1)^m = C_m^1 n^{m-1}+C_m^2n^{m-2}(-1)^1+C_m^3n^{m-3}(-1)^2+\dots+C_m^mn^{0}(-1)^{m-1} nm(n1)m=Cm1nm1+Cm2nm2(1)1+Cm3nm3(1)2++Cmmn0(1)m1
我们在计算连加式的时候,要利用等比数列的计算思想,对不相等的系数呢,最好给它化成相等的数。我在这里列一个表格。我们定义一种标记如下: S n i = ∑ n = 1 N 0 − 1 n i q n S_n^i = \sum_{n = 1} ^ {N_0 - 1}n^i q^n Sni=n=1N01niqn。并且在计算 S n m S_n^m Snm的时候,假定 S n m − 1 , S n m − 2 … S n 0 S_n^{m-1},S_n^{m-2}\dots S_n^0 Snm1,Snm2Sn0都已知。我们可以推出一个递推式,这个递推式是由 S n m − 1 , S n m − 2 … S n 0 S_n^{m-1},S_n^{m-2}\dots S_n^0 Snm1,Snm2Sn0组成。我们先来看下面的这个式子。
S n m = q + 2 m q 2 + 3 m q 3 ⋯ + ( N 0 − 1 ) m q N 0 − 1 S_n^m = q + 2^mq^2+3^mq^3\dots+(N_0-1)^mq^{N_0-1} Snm=q+2mq2+3mq3+(N01)mqN01,我们把它们的系数全部写下来,看看有什么特征。

1 q 1q 1q 2 m q 2 2^mq^2 2mq2 3 m q 3 3^mq^3 3mq3 … \dots ( N 0 − 1 ) m q N 0 − 1 (N_0-1)^mq^{N_0-1} (N01)mqN01

我们尽可能地去利用等比数列的求和公式,所以我们进行如下的展开。

1 q 1q 1q 1 q 2 1q^2 1q2 1 q 3 1q^3 1q3 … \dots 1 q N 0 − 1 1q^{N_0-1} 1qN01
0 0 0 ( 2 m − 1 ) q 2 (2^m-1)q^2 (2m1)q2 ( 2 m − 1 ) q 3 (2^m-1)q^3 (2m1)q3 … \dots ( 2 m − 1 ) q N 0 − 1 (2^m-1)q^{N_0-1} (2m1)qN01
0 0 0 0 0 0 ( 3 m − 2 m ) q 3 (3^m-2^m)q^3 (3m2m)q3 … \dots ( 3 m − 2 m ) q N 0 − 1 (3^m-2^m)q^{N_0-1} (3m2m)qN01
0 0 0 0 0 0 0 0 0 … \dots ( 4 m − 3 m ) q N 0 − 1 (4^m-3^m)q^{N_0-1} (4m3m)qN01
… \dots … \dots … \dots … \dots … \dots
0 0 0 0 0 0 0 0 0 … \dots ( ( N 0 − 1 ) m − ( N 0 − 2 ) m ) q N 0 − 1 ((N_0-1)^m-(N_0-2)^m)q^{N_0-1} ((N01)m(N02)m)qN01

我们知道,一个等比数列的求和公式只与首项和尾项以及公比有关。从上述展开式中,我们可以从中发现 ( N 0 − 1 ) (N_0-1) (N01)个等比数列的求和。它们的和分别如下: q − q N 0 1 − q \frac{q-q^{N_0}}{1-q} 1qqqN0 ( 2 m − 1 ) q 2 − q N 0 1 − q (2^m-1)\frac{q^2-q^{N_0}}{1-q} (2m1)1qq2qN0 ( 3 m − 2 m ) q 3 − q N 0 1 − q (3^m-2^m)\frac{q^3-q^{N_0}}{1-q} (3m2m)1qq3qN0 … \dots ( ( N 0 − 1 ) m − ( N 0 − 2 ) m ) q N 0 − 1 − q N 0 1 − q ((N_0-1)^m-(N_0-2)^m)\frac{q^{N_0-1}-q^{N_0}}{1-q} ((N01)m(N02)m)1qqN01qN0,而 S n m S_n^m Snm就是前面一系列式子的和。我们加到一起会发现如下的式子: S n m = q + ( 2 m − 1 ) q 2 + ( 3 m − 2 m ) q 3 + ⋯ + ( N 0 − 1 ) m − ( N 0 − 2 ) m ) q N 0 − 1 1 − q − ( N 0 − 1 ) m p N 0 1 − q S_n^m = \frac{q+(2^m-1)q^2+(3^m-2^m)q^3+\dots+(N_0-1)^m-(N_0-2)^m)q^{N_0-1}}{1-q}-\frac{(N_0-1)^mp^{N_0}}{1-q} Snm=1qq+(2m1)q2+(3m2m)q3++(N01)m(N02)m)qN011q(N01)mpN0,这个时候,我们的工作重心就转移到解前一段很长的式子之和上,我们发现: n m − ( n − 1 ) m = C m 1 n m − 1 + C m 2 n m − 2 ( − 1 ) 1 + C m 3 n m − 3 ( − 1 ) 2 + ⋯ + C m m n 0 ( − 1 ) m − 1 n^m - (n-1)^m = C_m^1 n^{m-1}+C_m^2n^{m-2}(-1)^1+C_m^3n^{m-3}(-1)^2+\dots+C_m^mn^{0}(-1)^{m-1} nm(n1)m=Cm1nm1+Cm2nm2(1)1+Cm3nm3(1)2++Cmmn0(1)m1,这就意味着我们可以将第一部分式子中的系数给再次展开,可以得到如下的式子: q + ( 2 m − 1 ) q 2 + ( 3 m − 2 m ) q 3 + ⋯ + ( N 0 − 1 ) m − ( N 0 − 2 ) m ) q N 0 − 1 = C m 1 ( − 1 ) 0 ( 1 m − 1 q + 2 m − 1 q 2 + 3 m − 1 q 3 + ⋯ + ( N 0 − 1 ) m − 1 q N 0 − 1 ) + C m 2 ( − 1 ) 1 ( 1 m − 2 q + 2 m − 2 q 2 + 3 m − 2 q 3 + ⋯ + ( N 0 − 1 ) m − 2 q N 0 − 1 ) + C m 3 ( − 1 ) 2 ( 1 m − 3 q + 2 m − 3 q 2 + 3 m − 3 q 3 + ⋯ + ( N 0 − 1 ) m − 3 q N 0 − 1 ) + ⋯ + C m m ( − 1 ) m − 1 ( 1 0 q + 2 0 q 2 + 3 0 q 3 + ⋯ + ( N 0 − 1 ) 0 q N 0 − 1 ) q+(2^m-1)q^2+(3^m-2^m)q^3+\dots+(N_0-1)^m-(N_0-2)^m)q^{N_0-1} = C_m^1(-1)^0(1^{m-1}q+2^{m-1}q^2+3^{m-1}q^3+\dots+(N_0-1)^{m-1}q^{N_0-1})+C_m^2(-1)^1(1^{m-2}q+2^{m-2}q^2+3^{m-2}q^3+\dots+(N_0-1)^{m-2}q^{N_0-1})+C_m^3(-1)^2(1^{m-3}q+2^{m-3}q^2+3^{m-3}q^3+\dots+(N_0-1)^{m-3}q^{N_0-1})+\dots+C_m^m(-1)^{m-1}(1^{0}q+2^{0}q^2+3^{0}q^3+\dots+(N_0-1)^{0}q^{N_0-1}) q+(2m1)q2+(3m2m)q3++(N01)m(N02)m)qN01=Cm1(1)0(1m1q+2m1q2+3m1q3++(N01)m1qN01)+Cm2(1)1(1m2q+2m2q2+3m2q3++(N01)m2qN01)+Cm3(1)2(1m3q+2m3q2+3m3q3++(N01)m3qN01)++Cmm(1)m1(10q+20q2+30q3++(N01)0qN01)幸运地是这个式子仍然是可以简化的,我们简化得到下面的形式: ∑ k = 1 m C m k ( − 1 ) k − 1 S n m − k \sum_{k = 1}^{m}C_m^k(-1)^{k-1}S_n^{m-k} k=1mCmk(1)k1Snmk,那我们再回到上面的式子,我们可以得到如下的式子: S n m = ∑ k = 1 m C m k ( − 1 ) k − 1 S n m − k 1 − q − ( N 0 − 1 ) m p N 0 1 − q S_n^m = \frac{\sum_{k = 1}^{m}C_m^k(-1)^{k-1}S_n^{m-k}}{1-q}-\frac{(N_0-1)^mp^{N_0}}{1-q} Snm=1qk=1mCmk(1)k1Snmk1q(N01)mpN0,那我们就可以得知,在假定 S n m − 1 , S n m − 2 … S n 0 S_n^{m-1},S_n^{m-2}\dots S_n^0 Snm1,Snm2Sn0都已知的情况下,我们可以推出 S n m S_n^m Snm的值。

尾声

又发现了一个小东西,迫不及待地发出来博各位看官一乐…

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值