AFX综合

本文推荐了《VC++深入详解》和《深入浅出MFC》作为学习MFC和VC++的基础书籍,并提到了不同Visual Studio版本的差异及使用建议。还介绍了D(ViewFrame)模式和Internet部分的CInternetSession类。

一、书籍

《MFC Windows程序设计(第2版)(修订版)Jeff Prosise》是直接翻译,像狗吊一样。
《VC++深入详解 孙鑫》易读,适合初学。
《深入浅出MFC 侯俊杰 台湾》适合灵活理解和灵活选择使用。
《VC++技术内幕 David J.Kruglinski》第5版翻译奇差,使用第四版。内容适合初级,但是概念名词等仍然是外文风格。适合倾向手册用途。

综上,《VC++深入详解》《深入浅出MFC》这两本书OK,另两本仅作手册用途。

二、

D(VF)(Document  (View Frame) )

三、IDE版本选择

例如Visual Studio 2005的AFX.H:
virtual ULONGLONG Seek(
   LONGLONG lOff,
   UINT nFrom 
);
Visual Studio 2003不清楚。

要printf出这样的类型,要这样写:
ULONGLONG filetotalsize=5912341234;
printf("size=%I64u",filetotalsize);
将字符串转换为ULONGLONG类型,可以使用
char strbuff[32]="4812341234";
ULONGLONG tt=_atoi64(strbuff);

从VC7.0开始,微软的版本号开发发生变化,变化规则如下:
VC7.0 对应Visual Studio 2003中;
VC8.0 对应Visual Studio 2005中;
VC9.0 对应Visual Studio 2008中;
VC10.0 对应Visual Studio 2010中;
VC11.0 对应Visual Studio 2012中;
VC12.0 对应Visual Studio 2013中;
VC13.0 对应Visual Studio 2015中;

学习的话,VC6.0sp6。鉴于MSDN和OS的支持状况,使用Visual Studio 2005吧

四、Internet部分。CInternetSession的cookie是与IE浏览器共用的,所以这个类应该是对WinINet的封装。至于那几个Internet Server API,没有找到request HTTP功能,所以只能做服务器用。

在“天池平台二手车交易价值评估竞赛”这一数据科学任务中,参与者需构建预测模型以估算二手车辆的市场成交价。此类赛事属于机器学习与数据分析领域的典型应用场景,旨在系统提升参赛者的特征构建、模型优化及结果验证能力。下文将分模块阐述关键技术要点: 1. 数据清洗与规整 原始数据集需经过系统处理,包括填补空缺数值、识别离群观测、剔除冗余字段,并将分类变量编码为模型可读的数值形式。此阶段质量直接影响后续建模效果。 2. 特征构建与筛选 需从原始字段中提炼有效预测因子,包括但不限于车辆制造厂商、出厂年份、行驶总里程、外观配色及动力系统配置。基于领域常识可衍生新特征,例如车龄换算、年均行驶强度指数等。 3. 数据分布探查 通过统计图表分析变量间关联规律,例如采用趋势线观察里程数与价格的相关性,使用分位数图示不同品牌的价格区间分布特征。 4. 算法模型选型 常用预测架构包括线性回归模型、树型决策结构、集成学习方法(如随机森林、XGBoost、LightGBM)、支持向量机及深度学习网络。需根据数据特性与计算资源进行综合选择。 5. 参数优化流程 采用K折交叉验证评估模型稳定性,配合网格搜索或随机搜索策略进行超参数调优,以最大化模型预测精度。 6. 集成策略应用 通过Bagging、Boosting或堆叠融合等技术整合多个基模型,通常能获得超越单一模型的表现。 7. 性能度量标准 预测任务常用评估指标包括均方误差、平均绝对误差、均方根误差及决定系数。不同业务场景需针对性选择评估体系。 8. 结果输出规范 最终预测结果需按赛事要求整理为特定结构的数据文件,通常包含样本标识符与对应价格预测值两列。 9. 时序特征处理 当数据包含交易时间维度时,需引入时间序列分析方法(如季节性分解、循环神经网络)捕捉市场波动规律。 10. 工程实践规范 采用Git进行版本追踪,通过模块化编程提升代码可维护性,建立标准化实验记录体系。 该竞赛全面覆盖数据预处理、特征工程、模型构建与验证等核心环节,同时强调工程化实施规范,既能强化技术理论认知,又可培养实际业务场景的问题解决能力。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值