机器学习
丹哩个丹
这个作者很懒,什么都没留下…
展开
-
线性回归算法梳理-1
线性回归算法梳理-11. 机器学习的一些概念1.1 有监督、无监督①. 有监督学习 :训练数据有标记信息,其中分类与回归属于监督学习。②. 无监督学习 :训练数据没有标记信息,代表有聚类。1.2 过拟合、欠拟合方差和偏差?如果一个模型,在训练集上的预测结果就不佳,指标偏低,那一般是欠拟合的问题。如果在训练集上指标很好,而在测试集上指标偏低,则很可能是过拟合问题。甚至有时候,在训练...原创 2019-03-29 19:02:54 · 494 阅读 · 0 评论 -
决策树算法梳理-3
初级算法梳理-3任务3 - 决策树算法梳理1. 信息论基础(熵 联合熵 条件熵 信息增益 基尼不纯度)2.决策树的不同分类算法(ID3算法、C4.5、CART分类树)的原理及应用场景3. 回归树原理4. 决策树防止过拟合手段5. 模型评估6. sklearn参数详解,Python绘制决策树任务3 - 决策树算法梳理1. 信息论基础(熵 联合熵 条件熵 信息增益 基尼不纯度)在构造决策树时,我...原创 2019-04-03 20:54:19 · 629 阅读 · 0 评论 -
逻辑回归算法梳理-2
1、逻辑回归与线性回归的联系与区别2、 逻辑回归的原理3、逻辑回归损失函数推导及优化4、 正则化与模型评估指标5、逻辑回归的优缺点6、样本不均衡问题解决办法7、sklearn参数...原创 2019-04-01 20:37:39 · 715 阅读 · 0 评论