一、前言
缓存穿透、缓存击穿、缓存雪崩这三个缓存数据库的异常,都和请求直接访问到持久化层的数据库有关,但是原因不一样
- 缓存穿透:因为缓存查询不到数据,去持久化层数据库查询,持久化层数据库中也查询不到。是因为对应的key本来就没有值。
- 缓存击穿:因为缓存查询不到数据,去持久化层数据库查询,持久化层能够查询到数据。是因为缓存数据库中热门的key突然过期,大量查询请求直接去查询持久化数据库。
- 缓存雪崩:因为缓存查询不到数据,去持久化层数据库查询,持久化层能够查询到数据。是因为缓存中大量数据集中过期、缓存服务器突然宕机,大量请求直接查询持久化数据库。
二、应对方案
2.1 缓存穿透
2.1.1 缓存空对象
将持久化层数据库中返回的空对象,也进行缓存,并设置过期时间。
这种方案一定程度上减轻了持久化层数据库的压力,但是也有很多问题,如下:
- 需要消耗部分空间来存储空对象
- 会造成查询数据和真实数据不一致的情况,比如在缓存中空值过期时间之前,持久化层数据库中对应key值修改,就会是的缓存和数据库中数据不一致。
2.1.2 布隆过滤器
布隆过滤器可以理解成一个set,里面存储了缓存中所有的key,在查询之前可以使用contain方法来判断要查询的值是否存在。对应contain方法,在判断不存在是准确的,在判断存在是不准确的,但是这种不准确是可以接受的,这样不仅节约了存储空值的空间,也减少了大部分没有命中的查询请求。
2.2 缓存击穿
2.2.1 设置热点数据永不过期
设置热点数据永不过期,就不会出现热点数据失效问题。
2.2.2 加互斥锁
使用分布式锁,使得每个key只有一个线程去查询持久化端的数据库。
2.3 缓存雪崩
2.3.1 redis集群
部署redis集群,实现redis的高可用。
2.3.2 限流降级
缓存失效后,通过加锁或者队列来控制数据库写到缓存的线程数量,比如对于某个key只允许一条线程查询和写缓存,其他线程等待。
2.3.3 数据预热
在部署时,将可能的数据加载到redis,并对不同的key设置不同的过期时间,尽量让缓存失效的时间点分布均匀。