目标检测
文章平均质量分 87
北方的杨先生
声明:博文的编写,主要参考网上资料,并结合个人见解,仅供学习、交流使用,如有侵权,请联系博主删除,原创文章转载请注明出处。博主微信:wx_big。
展开
-
mixup、cutout、cutmix
《mixup:BEYOND EMPIRICAL RISK MINIMIZATION》2017(ICLR2018),Hongyi Zhang et al. Mixup ,MIT和FAIRQ: 为什么data augmentation是理解为控制模型复杂度?A: 准确地说,我觉得data augmentation既不能简单地理解为增加training data,也不能简单地理解为控制模型复杂度,而是两种效果兼而有之。考虑图像识别里常用的改变aspect ratio做data augmentation的原创 2020-05-21 10:36:01 · 2536 阅读 · 0 评论 -
目标检测iou loss
GIOU Loss解决 iou loss 为1 时不优化的缺陷 增加c项,表示为预测框与标签框最小矩形 缺陷,当两个框相交时,尤其一个框包含另一个的时候,退化为iou loss,收敛会变慢DIOU Loss直接最小化Anchor和目标框之间的归一化距离以达到更快的收敛速度 b、bgt分别是anchor、groundtrueth中心点坐标,p为其欧式距离,c为其包含最小矩形对角线长度 解决GIOU Loss 退化IOU loss的情况CIOU Loss回归损失在与目标框有.原创 2020-05-21 10:33:37 · 1265 阅读 · 0 评论 -
Ultra_mnn_android_demo
Ultra_mnn_android_demo在android端实现mnn ultra人脸检测c++代码,并生成app。链接:https://github.com/yangheng111/Ultra_mnn_android_demo您的鼓励是我前进的源动力????...原创 2019-11-06 10:57:10 · 900 阅读 · 0 评论 -
MNN_pc_demo
MNN_Pc_demo在服务器端实现mnn目标检测c++代码,并生成可执行文件。链接:https://github.com/yangheng111/MNN_Pc_demo您的鼓励是我前进的源动力????原创 2019-11-06 10:55:30 · 1045 阅读 · 1 评论 -
在Wider Easy Medium Hard 数据集上Map评估
您的鼓励是我前进的源动力????原创 2019-10-18 14:03:53 · 1211 阅读 · 1 评论 -
Pytorch转onnx
原创 2019-08-13 15:38:25 · 2043 阅读 · 0 评论 -
继往开来!目标检测二十年技术综述
转载 2019-05-17 09:42:31 · 449 阅读 · 0 评论 -
ROI Pooling层详解
ROI Pooling层详解原文链接:https://blog.deepsense.ai/region-of-interest-pooling-explained/目标检测typical architecture 通常可以分为两个阶段:(1)region proposal:给定一张输入image找出objects可能存在的所有位置。这一阶段的输出应该是一系列object可能位置的bounding ...转载 2018-03-21 10:48:31 · 3896 阅读 · 4 评论 -
AttributeError: 'module' object has no attribute 'LabelMap'
ssd检测遇到的错误解决方案:export PATH=$PATH:自己的caffe路径/python:$PYTHONPATH原创 2018-01-11 11:49:37 · 723 阅读 · 0 评论 -
Check failed: mdb_status == 0 (2 vs. 0) No such file or directory
ssd执行create_data python代码时,出现Check failed: mdb_status == 0 (2 vs. 0) No such file or directory错误原因:制作lmdb时,有文件找不到解决方案:查询标注文件和图像文件中的xml与jpg文件,是否混淆,另外确认有没有xml文件中有的width/height为0,但是实际图像却有原创 2018-01-11 11:47:25 · 3228 阅读 · 0 评论 -
ssd训练错误
今天,填充数据重新训练SSD时出现错误OpenCV Error: Assertion failed ((scn == 3 || scn == 4) && (depth == CV_8U || depth == CV_32F)) in cvtColor, file /build/opencv-SviWsf/opencv-2.4.9.1+dfsg/modules/imgproc/src/color原创 2017-09-26 14:53:19 · 1304 阅读 · 0 评论 -
NMS-----非极大抑制
因为去修改deploy.prototxt中nums_threshold参数,想到研究一下NMS非极大抑制,记录一下简单的理解。非极大抑制用在目标检测后筛选最终结果,更精确的定位。一般分三步:1、置信度排序并选出框置信度最高的框2、计算其他框与最高置信度框的iou,若IOU大于阈值(nums_threshold),则认为与最大一致,去除,保留最大。3、从未处理的框中重新选原创 2017-09-08 14:48:45 · 929 阅读 · 0 评论 -
ssd微调VGG网络出现的错误
本文ssd微调使用的是VGG_coco_SSD_300x300_iter_400000.caffemodel模型,在微调训练是出现了一些问题。1、原因:因为原模型是21个输出,本人训练6个输出,导致输出层维度不一致,conf层无法共享权值解决:修改conf层名称,将两个CreateMultiBoxHead函数增加conf_postfix='_hlg'参数2、Sy原创 2017-09-05 15:28:24 · 2081 阅读 · 5 评论 -
SSD微调训练
本人根据下载的ssd_model比较,进行ssd模型微调训练,效果也比较好借助blog:http://blog.csdn.net/jesse_mx/article/details/74011886效果:原创 2017-09-05 12:25:31 · 1336 阅读 · 0 评论 -
运动目标检测跟踪各过程算法综述
图像预处理数字图像中的几种典型噪声有:高斯噪声来源于电子电路噪声和低照明度或高温带来的传感器噪声;椒盐噪声类似于随机分布在图像上的胡椒和盐粉微粒,主要由图像切割引起或变换域引起的误差;加性噪声是图像在传输中引进的信道噪声。一般来说,引入的都是加性随机噪声,可以采用均值滤波、中值滤波、高斯滤波等方法去除噪声,提高信噪比。均值滤波在噪声分布较平均,且峰值不是很高的情况下能够得到较好的应用;中值转载 2017-03-30 09:57:04 · 3708 阅读 · 0 评论