第一篇实验预习报告

1.问题定义

表达式转换

2.问题分析

中缀表达式是我们日常常用的数学表达式格式,但是计算机并不能直接高效地处理中缀表达式,特别是其中涉及的括号和运算符优先级。因此,为了方便计算机进行计算,我们需要将中缀表达式转换为后缀表达式。

为了实现从中缀到后缀的转换,我们需要考虑以下几个关键问题:

  • 运算符优先级:不同运算符的优先级不同。例如,* 和 / 的优先级高于 + 和 -,而括号中的表达式需要优先处理。
  • 运算符结合性:运算符的结合性决定了相同优先级的运算符如何处理。例如,+ 和 - 是左结合的,^(幂运算符)通常是右结合的。
  • 括号的处理:括号的作用是改变运算顺序,特别是需要在栈中暂时保存括号,直到遇到配对的右括号才进行相应的处理。
  • 算法步骤:
  • (1).初始化一个空栈用于存储运算符。

    (2).遍历输入的中缀表达式,对其中每个字符进行处理:

    ·如果是操作数,即运算对象数字,则直接将其添加到输出中。

    ·如果是左括号,将其压入栈中。

    ·如果是右括号,弹出栈顶运算符并添加到输出中,同时右括号置为栈顶运算符,直到栈顶运算符的优先级低于当前运算符或栈为空,然后将当前运算符压入栈中。

    (3).遍历结束后,将栈中剩余运算符全部弹出并添加到输出中。

    栈的定义

    template<typename Datatype>

    Class Stack{

    Private:

    Std::vector<Datatype>elements;

    Public:

    Stack();//构造函数

    ~Stack();析构函数

    Void Push(const Datatype&value);入栈

    Void Pop();出栈

    Datatype Gettop();取栈顶元素

    bool Empty() const;判空

    };

  • 3.代码实现

  • #include <iostream>

  • #include <string>

  • bool isOperand(char c) {

  • return isalnum(c); 

  • }

  • string  infixToPostfix(const string& expression) {

  • stack<char> operators;

  • string result; 

  • int main() {

  • string expression;

  • cout << "请输入中缀表达式: ";

  • cin >> expression;

  • string postfix = infixToPostfix(expression);

  • cout << "后缀表达式: " << postfix << endl;

  • return 0;

  • }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值