1.问题定义
表达式转换
2.问题分析
中缀表达式是我们日常常用的数学表达式格式,但是计算机并不能直接高效地处理中缀表达式,特别是其中涉及的括号和运算符优先级。因此,为了方便计算机进行计算,我们需要将中缀表达式转换为后缀表达式。
为了实现从中缀到后缀的转换,我们需要考虑以下几个关键问题:
- 运算符优先级:不同运算符的优先级不同。例如,
*
和/
的优先级高于+
和-
,而括号中的表达式需要优先处理。 - 运算符结合性:运算符的结合性决定了相同优先级的运算符如何处理。例如,
+
和-
是左结合的,^
(幂运算符)通常是右结合的。 - 括号的处理:括号的作用是改变运算顺序,特别是需要在栈中暂时保存括号,直到遇到配对的右括号才进行相应的处理。
- 算法步骤:
-
(1).初始化一个空栈用于存储运算符。
(2).遍历输入的中缀表达式,对其中每个字符进行处理:
·如果是操作数,即运算对象数字,则直接将其添加到输出中。
·如果是左括号,将其压入栈中。
·如果是右括号,弹出栈顶运算符并添加到输出中,同时右括号置为栈顶运算符,直到栈顶运算符的优先级低于当前运算符或栈为空,然后将当前运算符压入栈中。
(3).遍历结束后,将栈中剩余运算符全部弹出并添加到输出中。
栈的定义
template<typename Datatype>
Class Stack{
Private:
Std::vector<Datatype>elements;
Public:
Stack();//构造函数
~Stack();析构函数
Void Push(const Datatype&value);入栈
Void Pop();出栈
Datatype Gettop();取栈顶元素
bool Empty() const;判空
};
-
3.代码实现
-
#include <iostream>
-
#include <string>
-
bool isOperand(char c) {
-
return isalnum(c);
-
}
-
string infixToPostfix(const string& expression) {
-
stack<char> operators;
-
string result;
-
int main() {
-
string expression;
-
cout << "请输入中缀表达式: ";
-
cin >> expression;
-
string postfix = infixToPostfix(expression);
-
cout << "后缀表达式: " << postfix << endl;
-
return 0;
-
}