【leetcode题解】3 - Scramble String

Scramble String

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great
   /    \
  gr    eat
 / \    /  \
g   r  e   at
           / \
          a   t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

    rgeat
   /    \
  rg    eat
 / \    /  \
r   g  e   at
           / \
          a   t

We say that "rgeat" is a scrambled string of "great".

Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

    rgtae
   /    \
  rg    tae
 / \    /  \
r   g  ta  e
       / \
      t   a

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

leetcode题目链接


解题思路:

法1:递归 + 剪枝

剪枝:

1. 长度不等,返回false,剪掉;

2. 两个string完成相同,返回true,剪掉; 

3. 统计每个字母的个数,不等,则返回false,剪掉。


递归:关键任务是确定分割点。暴力破解,遍历从1~len-1的分割点
          每个分割点有两种可能,翻转与不翻转,分别递归

源码:

class Solution {
public:
    bool isScramble(string s1, string s2) {
        
        // 递归 + 剪枝
        // 剪枝:统计每个字母的个数,不等 则返回
        // 递归:关键任务是确定分割点。暴力破解,遍历从1~len-1的分割点
        //       每个分割点有两种可能,翻转与不翻转
        
        if (s1.size() != s2.size())
            return false;
        if (s1 == s2)    // 没有这个剪枝,大数据量过不了
            return true;
            
        int vcnt[26] = {0};
        for (int i = 0; i < s1.size(); ++i)
            ++vcnt[s1[i] - 'a'];               // 考虑小写字母
        for (int i = 0; i < s2.size(); ++i)
            --vcnt[s2[i] - 'a'];
        for (int i = 0; i < 26; ++i)
            if (vcnt[i] != 0)
                return false;
        
        for (int i = 1; i < s1.size(); ++i)
            if ((isScramble(s1.substr(0, i), s2.substr(0, i)) && 
                 isScramble(s1.substr(i), s2.substr(i))) ||             // 先检查不翻转的情况
                (isScramble(s1.substr(0, i), s2.substr(s2.size()-i)) && 
                 isScramble(s1.substr(i), s2.substr(0, s2.size()-i))) ) // 再检查左右翻转的情况
                return true;
        return false;
    }
};


法2:动态规划

解题思路:
f[i][j][k] 表示 s1从i开始k个字符 与 s2从j开始k个字符 是否为 scrambled string
             / (s1[i] == s2[j]), k=1
f[i][j][k] =                   枚举分割点l(1 <= l <= k-1),分左右不翻转和翻转两种情况讨论
             \ (f[i][j][l] && f[i+l][j+l][k-l]) || ((f[i][j+k-l][l] && f[i+l][j][k-l]))
时间复杂度O(n^4)


源码:
class Solution {
public:
    bool isScramble(string s1, string s2) {
        
        // 法2:动态规划
        // f[i][j][k] 表示 s1从i开始k个字符 与 s2从j开始k个字符 是否为 scrambled string
        //              / (s1[i] == s2[j]), k=1
        // f[i][j][k] =                   枚举分割点l(1 <= l <= k-1),分左右不翻转和翻转两种情况讨论
        //              \ (f[i][j][l] && f[i+l][j+l][k-l]) || ((f[i][j+k-l][l] && f[i+l][j][k-l]))
        // 时间复杂度O(n^4)
        
        if (s1.size() != s2.size())
            return false;
        if (s1 == s2)
            return true;
        
        int n = s1.size();
        vector<vector<vector<bool> > > f(n, vector<vector<bool> >(n, vector<bool>(n+1, false)));
        
        for (int k = 1; k <= n; ++k)  // 为方便,k从1开始,相应的第一维分配空间为 n+1
        {
            for (int i = 0; i <= n-k; ++i) // 注意k限制了i的取值
            {
                for (int j = 0; j <= n-k; ++j)
                {
                    if (k == 1)
                        f[i][j][1] = (s1[i] == s2[j]);
                    
                    for (int l = 1; l < k; ++l)  // 枚举分割点的位置
                    {
                        if ((f[i][j][l] && f[i+l][j+l][k-l]) ||     // 不翻转
                            ((f[i][j+k-l][l] && f[i+l][j][k-l])) )  // 左右翻转
                        {
                            f[i][j][k] = true;
                            break;
                        }  // else false
                    }
                }
            }
        }
        
        return f[0][0][n];
    }
};


算法效果

由于算法1的剪枝,实际效果算法1耗时40ms,算法2耗时596ms。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值