8.CTR_推荐系统
文章平均质量分 76
无
jediael_lu
没有
展开
-
协同过滤—基于图的方法
文章目录1、概述1.1 基于路径的相似度1.2 基于随机游走的相似度1、概述在基于图的推荐方式中,数据可以用图的形式表示。左边的数据点表示用户的集合,右边的数据表表示物品的集合,这些点通过线连接,线上的数据是用户对物品的评分。用户到物品的路径长度可以用于预估用户对物品的评分;用户和用户(或者物品和物品)之间的路径长度可以用于预估用户(或者物品)的相似度。基于图的推荐得到的传递关联可以通过2...原创 2019-06-25 17:10:23 · 1427 阅读 · 0 评论 -
协同过滤——基于模型的算法
文章目录1 概述1.1 基于分解的方法1.1.1 分解相似度矩阵:特征值分解1.1.2 分解评分矩阵:奇异值分解(SVD)1.1.3 SVD、SVD++、时间敏感模型1.2 基于邻域的学习方法2 SVD与LFM2.1 基本原理2.2 计算逻辑及优化目标2.3 优化方法2.4 关于SVD和LFM3、SVD++4 时间敏感的因子模型1 概述基于模型的方法也叫做基于学习的方法,通过定义一个参数模型来...原创 2019-06-25 17:07:38 · 10333 阅读 · 0 评论 -
协同过滤——基于邻域的算法
文章目录1、概述1.1 基于用户的协同过滤与基于物品的协同过滤的比较1.2 用户行为数据1.3 数学符号约定2、基于用户的协同过滤2.1 基本原理2.2 数学描述2.3 回归与分类3、基于物品的协同过滤3.1 基本原理3.2 数学描述3.3 哈利波特问题4、基于邻域方法的要素4.1 评分标准化4.1.1 均值中心化4.1.2 Z-score标准化4.2 相似度的计算4.2.1 常用的相似度4.2...原创 2019-06-25 17:04:18 · 2066 阅读 · 0 评论 -
点击率预估算法:FM与FFM
点击率预估算法:FFM@(计算广告)[计算广告]点击率预估算法FFM1FM1 背景11 线性模型12 二项式模型2 FM21 FM基本原理22 数据分析23参数个数24 计算时间复杂度25 梯度26 训练时间复杂度2FFM1 背景及基本原理2模型与最优化问题21 模型22 最优化问题23 自适应学习率24 FFM算法的最终形式3完整算法流程31 计算梯度32原创 2017-09-01 14:17:03 · 33372 阅读 · 4 评论 -
点击率预测算法:FTRL
1逻辑回归1 sigmoid函数2 极大似然估计MLE与损失函数3 梯度下降4 另一种形式的损失函数及其梯度2FOBOS与RDA1 FOBOS基本原理2 L1-FOBOS3 RDA基本原理4 L1-RDA3FTRL1 从L1-FOBOS和L1-RDA推导FTRL2 FTRL权重更新的最终形式3 学习率4 工程实现计算过程41 一些定义42 FTRL算法4FTRL的工原创 2017-09-01 14:15:00 · 6794 阅读 · 1 评论 -
使用GBDT+LR作点击率预测
主要内容来源于facebook的论文:Practical Lessons from Predicting Clicks on Ads at Facebook》1、基本思路使用GBDT根据用户特征转换生成新的特征,每棵树的每个叶子均作为一个特征,然后将这些特征代入LR。举个例子:(1)训练GBDT树:我们现在m个样本,总共有6000个标签,将这些样本用于训练GBDT,生成10棵树,每原创 2017-09-01 14:18:02 · 4240 阅读 · 0 评论 -
深度学习在CTR中的应用
一、资料目前的很多资料均是基于张伟楠的FNN模型,但还没有很大规模的应用。另一种是google提出的wide & deep learning模型,主要用于推荐,美团的文章中也有介绍。Deep Learning over Multi-Field Categorical Data: A Case Study on User Response Prediction原创 2017-09-01 14:19:03 · 7338 阅读 · 2 评论