matlab遗传算法工具箱函数及实例讲解(转引)

本文介绍遗传算法的应用案例,包括初始化种群生成函数及遗传算法函数的详细解释,并通过两个具体实例展示如何使用MATLAB实现遗传算法求解优化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

核心函数:  
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--
初始种群的生成函数  
【输出参数】  
 pop--
生成的初始种群  
【输入参数】  
 num--
种群中的个体数目  
 bounds--
代表变量的上下界的矩阵  
 eevalFN--
适应度函数  
 eevalOps--
传递给适应度函数的参数  
 options--
选择编码形式 ( 浮点编码或是二进制编码 )[precision F_or_B],  
    precision--
变量进行二进制编码时指定的精度  
    F_or_B--
1 时选择浮点编码,否则为二进制编码 , precision 指定精度

(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... 
         termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--
遗传算法函数  
【输出参数】  
    x--
求得的最优解  
    endPop--
最终得到的种群  
    bPop--
最优种群的一个搜索轨迹  
【输入参数】  
    bounds--
代表变量上下界的矩阵  
    evalFN--
适应度函数  
    evalOps--
传递给适应度函数的参数  
    startPop-
初始种群  
    opts[epsilon prob_ops display]--opts(1:2)
等同于 initializega options 参数,第三个参数控制是否输出,一般为 0 。如 [1e-6 1 0] 
    termFN--
终止函数的名称 , ['maxGenTerm'] 
    termOps--
传递个终止函数的参数 , [100] 
    selectFN--
选择函数的名称 , ['normGeomSelect'] 
    selectOps--
传递个选择函数的参数 , [0.08] 
    xOverFNs--
交叉函数名称表,以空格分开,如 ['arithXover heuristicXover simpleXover'] 
    xOverOps--
传递给交叉函数的参数表,如 [2 0;2 3;2 0] 
    mutFNs--
变异函数表,如 ['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] 
    mutOps--
传递给交叉函数的参数表 , [4 0 0;6 100 3;4 100 3;4 0 0] 

注意】 matlab 工具箱函数必须放在工作目录下  
【问题】求 f(x)=x+10*sin(5x)+7*cos(4x) 的最大值,其中 0<=x<=9 
【分析】选择二进制编码,种群中的个体数目为 10 ,二进制编码长度为 20 ,交叉概率为 0.95, 变异概率为 0.08 
【程序清单】  
   %
编写目标函数  
     function[sol,eval]=fitness(sol,options) 
       x=sol(1); 
       eval=x+10*sin(5*x)+7*cos(4*x); 
   %
把上述函数存储为 fitness.m 文件并放在工作目录下  
    
   initPop=initializega(10,[0 9],'fitness');%
生成初始种群,大小为 10 
   [x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',... 
     [0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25
次遗传迭代  

运算借过为: x = 
   7.8562 24.8553(
x 7.8562 时, f x )取最大值 24.8553) 

注:遗传算法一般用来取得近似最优解,而不是最优解。  


遗传算法实例
【问题】在- 5<=Xi<=5,i=1,2 区间内,求解  
       f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282
的最小值。  
【分析】种群大小 10 ,最大代数 1000 ,变异率 0.1, 交叉率 0.3 
【程序清单】  
   
%源函数的 matlab 代码  
      function [eval]=f(sol) 
        numv=size(sol,2); 
        x=sol(1:numv); 
        eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282; 
  %
适应度函数的 matlab 代码  
      function [sol,eval]=fitness(sol,options) 
        numv=size(sol,2)-1; 
        x=sol(1:numv); 
        eval=f(x); 
        eval=-eval; 
  %
遗传算法的 matlab 代码  
      bounds=ones(2,1)*[-5 5]; 
      [p,endPop,bestSols,trace]=ga(bounds,'fitness') 

注:前两个文件存储为 m 文件并放在工作目录下,运行结果为  
   p = 
   0.0000 -0.0000 0.0055 

大家可以直接绘出 f(x) 的图形来大概看看 f x )的最值是多少,也可是使用优化函数来验证。 matlab 命令行执行命令:  
 fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9]) 

evalops
是传递给适应度函数的参数, opts 是二进制编码的精度, termops 是选择 maxGenTerm 结束函数时传递个 maxGenTerm 的参数,即遗传代数。 xoverops 是传递给交叉函数的参数。 mutops 是传递给变异函数的参数
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值