Flume架构以及应用介绍

在具体介绍本文内容之前,先给大家看一下Hadoop业务的整体开发流程: 
这里写图片描述 
从Hadoop的业务开发流程图中可以看出,在大数据的业务处理过程中,对于数据的采集是十分重要的一步,也是不可避免的一步,从而引出我们本文的主角—Flume。本文将围绕Flume的架构、Flume的应用(日志采集)进行详细的介绍。 
(一)Flume架构介绍 
1、Flume的概念 
这里写图片描述 
flume是分布式的日志收集系统,它将各个服务器中的数据收集起来并送到指定的地方去,比如说送到图中的HDFS,简单来说flume就是收集日志的。 
2、Event的概念 
在这里有必要先介绍一下flume中event的相关概念:flume的核心是把数据从数据源(source)收集过来,在将收集到的数据送到指定的目的地(sink)。为了保证输送的过程一定成功,在送到目的地(sink)之前,会先缓存数据(channel),待数据真正到达目的地(sink)后,flume在删除自己缓存的数据。 
在整个数据的传输的过程中,流动的是event,即事务保证是在event级别进行的。那么什么是event呢?—–event将传输的数据进行封装,是flume传输数据的基本单位,如果是文本文件,通常是一行记录,event也是事务的基本单位。event从source,流向channel,再到sink,本身为一个字节数组,并可携带headers(头信息)信息。event代表着一个数据的最小完整单元,从外部数据源来,向外部的目的地去。 
为了方便大家理解,给出一张event的数据流向图: 
这里写图片描述 
一个完整的event包括:event headers、event body、event信息(即文本文件中的单行记录),如下所以: 
这里写图片描述 
其中event信息就是flume收集到的日记记录。 
3、flume架构介绍 
flume之所以这么神奇,是源于它自身的一个设计,这个设计就是agent,agent本身是一个java进程,运行在日志收集节点—所谓日志收集节点就是服务器节点。 
agent里面包含3个核心的组件:source—->channel—–>sink,类似生产者、仓库、消费者的架构。 
source:source组件是专门用来收集数据的,可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy、自定义。 
channel:source组件把数据收集来以后,临时存放在channel中,即channel组件在agent中是专门用来存放临时数据的——对采集到的数据进行简单的缓存,可以存放在memory、jdbc、file等等。 
sink:sink组件是用于把数据发送到目的地的组件,目的地包括hdfs、logger、avro、thrift、ipc、file、null、hbase、solr、自定义。 
4、flume的运行机制 
flume的核心就是一个agent,这个agent对外有两个进行交互的地方,一个是接受数据的输入——source,一个是数据的输出sink,sink负责将数据发送到外部指定的目的地。source接收到数据之后,将数据发送给channel,chanel作为一个数据缓冲区会临时存放这些数据,随后sink会将channel中的数据发送到指定的地方—-例如HDFS等,注意:只有在sink将channel中的数据成功发送出去之后,channel才会将临时数据进行删除,这种机制保证了数据传输的可靠性与安全性。 
5、flume的广义用法 
flume之所以这么神奇—-其原因也在于flume可以支持多级flume的agent,即flume可以前后相继,例如sink可以将数据写到下一个agent的source中,这样的话就可以连成串了,可以整体处理了。flume还支持扇入(fan-in)、扇出(fan-out)。所谓扇入就是source可以接受多个输入,所谓扇出就是sink可以将数据输出多个目的地destination中。 
这里写图片描述 
(二)flume应用—日志采集 
对于flume的原理其实很容易理解,我们更应该掌握flume的具体使用方法,flume提供了大量内置的Source、Channel和Sink类型。而且不同类型的Source、Channel和Sink可以自由组合—–组合方式基于用户设置的配置文件,非常灵活。比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase,甚至是另外一个Source等等。下面我将用具体的案例详述flume的具体用法。 
其实flume的用法很简单—-书写一个配置文件,在配置文件当中描述source、channel与sink的具体实现,而后运行一个agent实例,在运行agent实例的过程中会读取配置文件的内容,这样flume就会采集到数据。 
配置文件的编写原则: 
1>从整体上描述代理agent中sources、sinks、channels所涉及到的组件

    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
 
 
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4

2>详细描述agent中每一个source、sink与channel的具体实现:即在描述source的时候,需要 
指定source到底是什么类型的,即这个source是接受文件的、还是接受http的、还是接受thrift 
的;对于sink也是同理,需要指定结果是输出到HDFS中,还是Hbase中啊等等;对于channel 
需要指定是内存啊,还是数据库啊,还是文件啊等等。

    # Describe/configure the source
    a1.sources.r1.type = netcat
    a1.sources.r1.bind = localhost
    a1.sources.r1.port = 44444

    # Describe the sink
    a1.sinks.k1.type = logger

    # Use a channel which buffers events in memory
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

3>通过channel将source与sink连接起来

    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
 
 
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3

启动agent的shell操作:

    flume-ng  agent -n a1  -c  ../conf   -f  ../conf/example.file  
    -Dflume.root.logger=DEBUG,console  
 
 
  • 1
  • 2
  • 1
  • 2

参数说明: -n 指定agent名称(与配置文件中代理的名字相同) 
-c 指定flume中配置文件的目录 
-f 指定配置文件 
-Dflume.root.logger=DEBUG,console 设置日志等级

具体案例: 
案例1: NetCat Source:监听一个指定的网络端口,即只要应用程序向这个端口里面写数据,这个source组件就可以获取到信息。 其中 Sink:logger Channel:memory 
flume官网中NetCat Source描述:

Property Name Default     Description
channels       –     
type           –     The component type name, needs to be netcat
bind           –  日志需要发送到的主机名或者Ip地址,该主机运行着netcat类型的source在监听          
port           –  日志需要发送到的端口号,该端口号要有netcat类型的source在监听      
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

a) 编写配置文件:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = 192.168.80.80
a1.sources.r1.port = 44444

# Describe the sink
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

b) 启动flume agent a1 服务端

flume-ng  agent -n a1  -c ../conf  -f ../conf/netcat.conf   -Dflume.root.logger=DEBUG,console
 
 
  • 1
  • 1

c) 使用telnet发送数据

telnet  192.168.80.80  44444  big data world!(windows中运行的)
 
 
  • 1
  • 1

d) 在控制台上查看flume收集到的日志数据: 
这里写图片描述

案例2:NetCat Source:监听一个指定的网络端口,即只要应用程序向这个端口里面写数据,这个source组件就可以获取到信息。 其中 Sink:hdfs Channel:file (相比于案例1的两个变化) 
flume官网中HDFS Sink的描述: 
这里写图片描述 
a) 编写配置文件:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = 192.168.80.80
a1.sources.r1.port = 44444

# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hadoop80:9000/dataoutput
a1.sinks.k1.hdfs.writeFormat = Text
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 0
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.filePrefix = %Y-%m-%d-%H-%M-%S
a1.sinks.k1.hdfs.useLocalTimeStamp = true

# Use a channel which buffers events in file
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /usr/flume/checkpoint
a1.channels.c1.dataDirs = /usr/flume/data

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

b) 启动flume agent a1 服务端

flume-ng  agent -n a1  -c ../conf  -f ../conf/netcat.conf   -Dflume.root.logger=DEBUG,console
 
 
  • 1
  • 1

c) 使用telnet发送数据

telnet  192.168.80.80  44444  big data world!(windows中运行的)
 
 
  • 1
  • 1

d) 在HDFS中查看flume收集到的日志数据: 
这里写图片描述 
案例3:Spooling Directory Source:监听一个指定的目录,即只要应用程序向这个指定的目录中添加新的文件,source组件就可以获取到该信息,并解析该文件的内容,然后写入到channle。写入完成后,标记该文件已完成或者删除该文件。其中 Sink:logger Channel:memory 
flume官网中Spooling Directory Source描述:

Property Name       Default      Description
channels              –  
type                  –          The component type name, needs to be spooldir.
spoolDir              –          Spooling Directory Source监听的目录
fileSuffix         .COMPLETED    文件内容写入到channel之后,标记该文件
deletePolicy       never         文件内容写入到channel之后的删除策略: never or immediate
fileHeader         false         Whether to add a header storing the absolute path filename.
ignorePattern      ^$           Regular expression specifying which files to ignore (skip)
interceptors          –          指定传输中event的head(头信息),常用timestamp
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

Spooling Directory Source的两个注意事项:

①If a file is written to after being placed into the spooling directory, Flume will print an error to its log file and stop processing.
即:拷贝到spool目录下的文件不可以再打开编辑
②If a file name is reused at a later time, Flume will print an error to its log file and stop processing.
即:不能将具有相同文件名字的文件拷贝到这个目录下
 
 
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4

a) 编写配置文件:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /usr/local/datainput
a1.sources.r1.fileHeader = true
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = timestamp

# Describe the sink
a1.sinks.k1.type = logger

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

b) 启动flume agent a1 服务端

flume-ng  agent -n a1  -c ../conf  -f ../conf/spool.conf   -Dflume.root.logger=DEBUG,console
 
 
  • 1
  • 1

c) 使用cp命令向Spooling Directory 中发送数据

 cp datafile  /usr/local/datainput   (注:datafile中的内容为:big data world!)
 
 
  • 1
  • 1

d) 在控制台上查看flume收集到的日志数据: 
这里写图片描述 
从控制台显示的结果可以看出event的头信息中包含了时间戳信息。 
同时我们查看一下Spooling Directory中的datafile信息—-文件内容写入到channel之后,该文件被标记了:

[root@hadoop80 datainput]# ls
datafile.COMPLETED
 
 
  • 1
  • 2
  • 1
  • 2

案例4:Spooling Directory Source:监听一个指定的目录,即只要应用程序向这个指定的目录中添加新的文件,source组件就可以获取到该信息,并解析该文件的内容,然后写入到channle。写入完成后,标记该文件已完成或者删除该文件。 其中 Sink:hdfs Channel:file (相比于案例3的两个变化)

a) 编写配置文件:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /usr/local/datainput
a1.sources.r1.fileHeader = true
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = timestamp

# Describe the sink
# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hadoop80:9000/dataoutput
a1.sinks.k1.hdfs.writeFormat = Text
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 0
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.filePrefix = %Y-%m-%d-%H-%M-%S
a1.sinks.k1.hdfs.useLocalTimeStamp = true

# Use a channel which buffers events in file
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /usr/flume/checkpoint
a1.channels.c1.dataDirs = /usr/flume/data

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

b) 启动flume agent a1 服务端

flume-ng  agent -n a1  -c ../conf  -f ../conf/spool.conf   -Dflume.root.logger=DEBUG,console
 
 
  • 1
  • 1

c) 使用cp命令向Spooling Directory 中发送数据

 cp datafile  /usr/local/datainput   (注:datafile中的内容为:big data world!)
 
 
  • 1
  • 1

d) 在控制台上可以参看sink的运行进度日志: 
这里写图片描述 
d) 在HDFS中查看flume收集到的日志数据: 
这里写图片描述 
这里写图片描述 
从案例1与案例2、案例3与案例4的对比中我们可以发现:flume的配置文件在编写的过程中是非常灵活的。

案例5:Exec Source:监听一个指定的命令,获取一条命令的结果作为它的数据源 
常用的是tail -F file指令,即只要应用程序向日志(文件)里面写数据,source组件就可以获取到日志(文件)中最新的内容 。 其中 Sink:hdfs Channel:file 
这个案列为了方便显示Exec Source的运行效果,结合Hive中的external table进行来说明。

a) 编写配置文件:

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /usr/local/log.file

# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hadoop80:9000/dataoutput
a1.sinks.k1.hdfs.writeFormat = Text
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 0
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.filePrefix = %Y-%m-%d-%H-%M-%S
a1.sinks.k1.hdfs.useLocalTimeStamp = true

# Use a channel which buffers events in file
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /usr/flume/checkpoint
a1.channels.c1.dataDirs = /usr/flume/data

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

b)在hive中建立外部表—–hdfs://hadoop80:9000/dataoutput的目录,方便查看日志捕获内容

hive> create external table t1(infor  string)
    > row format delimited
    > fields terminated by '\t'
    > location '/dataoutput/';
OK
Time taken: 0.284 seconds
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

c) 启动flume agent a1 服务端

flume-ng  agent -n a1  -c ../conf  -f ../conf/exec.conf   -Dflume.root.logger=DEBUG,console
 
 
  • 1
  • 1

d) 使用echo命令向/usr/local/datainput 中发送数据

 echo  big data > log.file
 
 
  • 1
  • 1

d) 在HDFS和Hive分别中查看flume收集到的日志数据: 
这里写图片描述

hive> select * from t1;
OK
big data
Time taken: 0.086 seconds
 
 
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4

e)使用echo命令向/usr/local/datainput 中在追加一条数据

echo big data world! >> log.file
 
 
  • 1
  • 1

d) 在HDFS和Hive再次分别中查看flume收集到的日志数据: 
这里写图片描述 
这里写图片描述

hive> select * from t1;
OK
big data
big data world!
Time taken: 0.511 seconds
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

总结Exec source:Exec source和Spooling Directory Source是两种常用的日志采集的方式,其中Exec source可以实现对日志的实时采集,Spooling Directory Source在对日志的实时采集上稍有欠缺,尽管Exec source可以实现对日志的实时采集,但是当Flume不运行或者指令执行出错时,Exec source将无法收集到日志数据,日志会出现丢失,从而无法保证收集日志的完整性。

案例6:Avro Source:监听一个指定的Avro 端口,通过Avro 端口可以获取到Avro client发送过来的文件 。即只要应用程序通过Avro 端口发送文件,source组件就可以获取到该文件中的内容。 其中 Sink:hdfs Channel:file 
(注:Avro和Thrift都是一些序列化的网络端口–通过这些网络端口可以接受或者发送信息,Avro可以发送一个给定的文件给Flume,Avro 源使用AVRO RPC机制) 
Avro Source运行原理如下图: 
这里写图片描述 
flume官网中Avro Source的描述:

Property     Name   Default Description
channels      –  
type          –     The component type name, needs to be avro
bind          –     日志需要发送到的主机名或者ip,该主机运行着ARVO类型的source
port          –     日志需要发送到的端口号,该端口要有ARVO类型的source在监听
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

1)编写配置文件

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.bind = 192.168.80.80
a1.sources.r1.port = 4141

# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hadoop80:9000/dataoutput
a1.sinks.k1.hdfs.writeFormat = Text
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 0
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.filePrefix = %Y-%m-%d-%H-%M-%S
a1.sinks.k1.hdfs.useLocalTimeStamp = true

# Use a channel which buffers events in file
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /usr/flume/checkpoint
a1.channels.c1.dataDirs = /usr/flume/data

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

b) 启动flume agent a1 服务端

flume-ng  agent -n a1  -c ../conf  -f ../conf/avro.conf   -Dflume.root.logger=DEBUG,console
 
 
  • 1
  • 1

c)使用avro-client发送文件

flume-ng avro-client -c  ../conf  -H 192.168.80.80  -p 4141 -F /usr/local/log.file
 
 
  • 1
  • 1

注:log.file文件中的内容为:

[root@hadoop80 local]# more log.file
big data
big data world!
 
 
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3

d) 在HDFS中查看flume收集到的日志数据: 
这里写图片描述 
这里写图片描述 
这里写图片描述

通过上面的几个案例,我们可以发现:flume配置文件的书写是相当灵活的—-不同类型的Source、Channel和Sink可以自由组合!

最后对上面用的几个flume source进行适当总结: 
① NetCat Source:监听一个指定的网络端口,即只要应用程序向这个端口里面写数据,这个source组件 
就可以获取到信息。 
②Spooling Directory Source:监听一个指定的目录,即只要应用程序向这个指定的目录中添加新的文 
件,source组件就可以获取到该信息,并解析该文件的内容,然后写入到channle。写入完成后,标记 
该文件已完成或者删除该文件。 
③Exec Source:监听一个指定的命令,获取一条命令的结果作为它的数据源 
常用的是tail -F file指令,即只要应用程序向日志(文件)里面写数据,source组件就可以获取到日志(文件)中最新的内容 。 
④Avro Source:监听一个指定的Avro 端口,通过Avro 端口可以获取到Avro client发送过来的文件 。即只要应用程序通过Avro 端口发送文件,source组件就可以获取到该文件中的内容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值