工具简介:
captcha-killer的修改版,支持关键词识别base64编码的图片,添加免费ocr库,用于验证码爆破,适配新版Burpsuite
项目地址:https://github.com/f0ng/captcha-killer-modified
工具安装教程:
环境需求和准备:
安装burpsuit(安装教程网上能搜一大堆),我使用的burp是v2023.10使用的是jdk8版本的
可以使用下面这个明令查询Java版本,后续下载jar包需要用到。
java -version
也可以在环境变量查看JDK版本(查看环境变量教程网上也是可以找到),java1.8版本就是java8版本
一、下载captcha-killer-modified.jar包和项目源码
下载地址:Releases · f0ng/captcha-killer-modified · GitHub
打开项目地址,点击右侧releases进入下载最新版本的jar包,我选择的是0.24.5-jdk8版,也可以直接点击下边地址下载(我使用的burp的jdk版本是jdk8,win10操作系统)。选择自己jdk对应版本的jar包即可。
可以把他们放在一个文件夹里,方便实用
二、安装插件
下载插件文件后,启动Burpsuite,点击Extensions模块,在Burp Extensions一栏点击Add,选择刚下好的jar包。并点击下一步完成安装。
三、安装ddddocr服务,并配置接口。
验证码识别接口用到的是Python库中的ddddocr,Web服务用 到的是aiohttp。 因此我们需要使用到Python环境,本次教程中使用的版本为 Python3.11.8(较新的python3都可以)。
执行命令:
pip install -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com ddddocr aiohttp
也可以单独安装ddddocr
python -m pip install ddddocr
四、安装完成后执行codereg.py
打开之前下载解压的项目源码的路径,在该路径下打开dos窗口(shift+鼠标右键,选择在此处打开powershell;),在dos界面输入“python coderg.py”,出现以下内容即代表验证码识别服务已搭建完成。
我在实际操作时,遇到了下面这个报错
报错的原因是:
错误信息表明,你当前使用的NumPy版本(2.0.0)与你试图使用的某些模块不兼容,特别是ddddocr
,它依赖于onnxruntime
。这些模块很可能是在旧版NumPy(可能为1.x版本)下编译的,与NumPy 2.0.0不兼容,因为新版NumPy对API进行了重大更改。
以下是你可采取的几个步骤来解决这个问题:
步骤1:降级NumPy
最简单的解决方法之一是将NumPy降级到与你使用的模块兼容的版本。你可以在Python环境中运行以下命令:
pip uninstall numpy
pip install numpy==1.23.5 # 或者替换为与你的模块兼容的具体版本
确保将1.23.5
替换为你知道的模块所需的确切版本,如果有的话。
步骤2:升级受影响的模块
另一种方法是,如果这些模块已经更新以支持NumPy 2.0.0,你可以尝试升级它们:
pip install --upgrade ddddocr onnxruntime
然而,根据错误消息,这些模块可能还不支持NumPy 2.0.0。
步骤3:使用pybind11>=2.12重新编译模块
如果这些模块是开源的,并且你有访问其源代码的权限,你可以尝试自己使用最新版本的pybind11(>=2.12)重新编译它们。这需要一些C++和构建系统如CMake的知识。
步骤4:检查兼容性并等待更新
检查你所使用模块的文档或GitHub问题页面,看看他们是否有计划更新以兼容NumPy 2.0.0。有时,等待官方发布支持新NumPy版本的更新是最好的行动方案。
步骤5:创建虚拟环境
如果你需要为不同的项目使用NumPy的不同版本,考虑为每个项目创建虚拟环境以避免冲突。这样,一个项目可以使用NumPy 2.0.0,而另一个项目可以使用旧版本。
要创建虚拟环境,你可以使用:
python -m venv myenv
source myenv/bin/activate # 在Unix或macOS上
myenv\Scripts\activate # 在Windows上
然后,在此环境中安装必要的包。记得在完成使用后退出虚拟环境。
在输入 myenv\Scripts\activate 后可能会爆红,不用理他,运行codereg.py文件,如果出现爆红的想象的话,多运行几次就正常了
配置验证码识别
将下面的url粘贴进接口url输入框:
http://127.0.0.1:8888
在 Requst template 下方空白处鼠标右键选择“ddddocr”,配置好请求模板。点击 “识别”,右侧Response raw栏会出现请求的结果,顺利的话,验证码就会出现在返回内容下方。