CTO技术分享:大模型应用落地范式,如何让模型真正成“专家”?

自 2022 年年底以来,大模型技术迅速走进企业视野。到了 2024 年过年期间,DeepSeek 发布了 R1 推理模型后,越来越多的企业和单位开始研究并尝试将大模型落地到实际业务场景。然而,**大模型如何才能真正服务于业务、独立解决问题?如何保证模型的可信度?前期训练数据不足又该怎么解决?**这些难题都在阻碍大模型的企业应用落地。

01

读万卷书 —— 理论学习阶段

目标:让大模型达到普通技术人员水平

对于一些专业性很强的行业或领域,如果只靠通用大模型加简单的知识库,很难满足需求。以工业领域为例,想直接让模型进行设备故障诊断并不现实,因为它对专业术语、行业背景并不了解。因此,理论学习阶段的重点在于**“让模型先明白行业专业知识是什么”。这时,我们通常会利用企业已有的行业数据**如设备手册、行业标准文件、历史故障案例等,对大模型进行增量预训练,让它掌握最基本的专业信息。其关键点在于:

**数据准备:**收集行业术语、常见问题、设备运行原理等材料,搭建初步语料库

**预训练:**在已有大模型的基础上,采用领域数据进行二次训练,让模型在专业领域先“入门”。

**质量评估:**通过简单的问答测试验证模型对基本概念的理解度

02

行万里路 —— 模拟训练阶段

目标:让大模型达到专业技术人员水平

当模型达到了“普通技术人员”的知识水平后,它仅仅能够理解专业术语,但尚不具备解决实际业务问题的专业能力。为了让模型能够有效运用所学知识,并使其学习成果得以充分发挥,我们需要对模型进行专门的任务解决训练。这样的训练将帮助模型从知识的领会跃升至实践问题的解决,真正实现学以致用。

这里的核心是挖掘专家的思维链和经验,包括分析思路、判断逻辑、关键指标选择等。可以通过以下方式来实现:

**从历史历史数据中挖掘信息:**收集专家在处理实际问题时的报告,并标注关键步骤和决策点。

**专家构建奖励模型:**将模型与专家进行对话或让模型对案例进行解答,然后由专家打分或纠正模型回答,持续迭代训练,优化模型对复杂问题的推理能力。

通过这一步,大模型不再只是“会背书”,而是真的能结合行业经验进行深入分析和判断。

03

实践出真知 —— 跟岗见习阶段

目标:让大模型在实际场景中不断优化

很多企业以为完成了微调和强化学习之后,模型就可以投入使用。事实上,即使前期训练再充分,也很难覆盖所有现场问题。尤其在一些广泛使用的大模型应用中,用户的问题和需求变化极其多样,前期根本无法穷尽。

未必然采用的方法是**“无感知或半有感知的跟岗学习”**,即把大模型功能嵌入到业务系统中,然后记录专家或业务人员在使用过程中的所有交互和反馈。例如:

系统埋点**:**记录用户对模型回复的编辑修改、复制粘贴等操作。

反馈分析**:**识别用户修改的内容、纠正的地方,进一步抽取隐性知识点,补充进模型的训练数据中。

这个阶段最核心的一点,就是把专家“只可意会不可言传”的经验沉淀到模型里。通过不断收集和分析用户在真实使用场景中的操作,大模型才能持续进步,真正贴近企业需求。

04

历尽千帆终成器 —— 独立上岗阶段

目标:大模型能够像真正的专家一样独立工作

在完成以上三个阶段后,大模型才能算是真正拥有“专家”能力。此时,就可以让大模型在业务流程中独立承担更多角色。


如果能在企业内持续进行数据积累和模型迭代,未来还可以让大模型输出更多更专业的洞察和决策支持。

大模型的企业应用绝不仅仅是“搭建一个模型+上线使用”这么简单。它需要从基础的专业知识预训练、到专家经验微调,再到真实环境下的反馈学习,最终才能成为业务专家,独当一面。

未必然通过多年在工业人工智能领域的实践,总结出了这“四步走”范式,帮助大模型在企业中顺利落地并发挥最大价值。未来,随着更多企业投入研发和应用,大模型还会持续演进,给各行各业带来更多创新和机遇。

图片

如何学习AI大模型?

大模型的发展是当前人工智能时代科技进步的必然趋势,我们只有主动拥抱这种变化,紧跟数字化、智能化潮流,才能确保我们在激烈的竞争中立于不败之地。

那么,我们应该如何学习AI大模型?

对于零基础或者是自学者来说,学习AI大模型确实可能会感到无从下手,这时候一份完整的、系统的大模型学习路线图显得尤为重要。

它可以极大地帮助你规划学习过程、明确学习目标和步骤,从而更高效地掌握所需的知识和技能。

这里就给大家免费分享一份 2025最新版全套大模型学习路线图,路线图包括了四个等级,带大家快速高效的从基础到高级!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,需要的扫描下方二维码领取 **

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值