目标检测
文章平均质量分 67
Jeremy_lf
知所先后
展开
-
PR计算逻辑
【代码】PR计算逻辑。原创 2024-03-10 16:44:15 · 387 阅读 · 0 评论 -
Heatmap关键点检测算法
高斯热图与坐标回归方法探讨原创 2023-01-24 21:57:45 · 7292 阅读 · 1 评论 -
图像中的数据增强及变换
图像中的数据增强及变换。原创 2022-12-28 15:31:06 · 239 阅读 · 1 评论 -
VoVNet:一种实时高效的目标检测Backbone网络【pytorch代码详解】
Pytorch实现代码2.Factors of Efficient Network Design在设计轻量级网络时,FLOPs和模型参数是主要考虑因素,但是减少模型大小和FLOPs不等同于减少推理时间和降低能耗。比如ShuffleNetv2与MobileNetv2在相同的FLOPs下,前者在GPU上速度更快。所以除了FLOPs和模型大小外,还需要考虑其他因素对能耗和模型推理速度的影响。这里考虑两个重要的因素:内存访问成本(Memory Access Cost,MAC)和GPU计算效率。2.1. Mem原创 2020-06-23 12:47:27 · 2170 阅读 · 0 评论 -
目标检测网络—SPPNet详解
翻译论文:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition概述当前深度卷积神经网络(CNNs)都需输入固定的图像尺寸(fixed-size),如224×224)。这种需要是“人为”的,并且当面对任意尺寸或比例的图像时,识别精度会降低。而论文中提出的**“空间金字塔池化”(spatial p...原创 2020-05-03 14:09:47 · 2732 阅读 · 3 评论 -
关于目标检测之Faster-RCNN的理解
Faster-RCNN(2015年)该目标检测算法是基于Fast-RCNN的基础上,进行了改进,主要是对RCNN和Fast-RCNN中的用Selective Research方法生成的候选框进行改进。提出了一种RPN生成候选框的方法。FasterRCNN由两个模型组成,第一个就是RPN(深层全卷积网络)生成候选区域,第二个就是使用FastRCNN对候选区域进行检测。相比FASTER-RCNN...原创 2020-04-02 17:59:19 · 508 阅读 · 0 评论 -
关于目标检测RCNN(Fast-RCNN/Faster-RCNN)系列的理解
目前较为成熟的目标检测算法可总结如下:RCNN(2014年)RCNN是一个多阶段训练模型,包括生成候选区域,CNN微调,SVM分类训练以及边界框回归等多个步骤(Selective Research+CNN+SVM)。整体流程类似于滑动窗口思想,R-CNN 采用对区域进行识别的方案,具体是:1、给定一张输入图片,从图片中提取 2000 个类别独立的候选区域。2、对于每个区域利用 CNN...原创 2020-04-02 00:56:07 · 927 阅读 · 0 评论 -
关于目标检测中的候选区域Region Proposal的理解
目标检测指的是在一张图像中能够检测出物体所在的区域并且给出物体类别概率,其核心可以分为定位与识别两大模块。定位指的是我们在目标图像中锁定物体所在的区域,然后送入分类网络完成物体的识别。图像定位常用方法具体介绍如下:滑窗法—sliding window滑窗法是指用不同大小的窗口在整个图像上进行滑动,然后对每个窗口区域进行检测,复杂度极大,效率低下,此外还必须考虑到高宽比例不一致的情况,搜索变得...原创 2020-03-31 23:01:31 · 3234 阅读 · 0 评论 -
【目标检测】FCOS:Fully Convolutional One-Stage Object Detection【附pytorch实现】
Abstract我们提出了一种完全卷积的一阶段目标检测器(FCOS),以按像素预测的方式来解决对象检测,类似于语义分割。几乎所有最新的物体检测器(例如RetinaNet,SSD,YOLOv3和Faster R-CNN)都依赖于预定义的锚框。相反,我们提出的目标检测器FCOS不含锚点和锚框。通过消除预定义的锚框,FCOS完全避免了与锚框相关的复杂计算,例如在训练过程中计算重叠。更重要的是,我们还避免了所有与锚框相关的超参数,这些超参数通常对最终检测性能非常敏感。借助唯一的后处理非最大抑制(NMS),带有Re原创 2020-06-29 20:44:28 · 858 阅读 · 1 评论 -
【目标检测】DetectoRS算法学习笔记
目标检测领域有个较新的方向:基于关键点进行目标物体检测。该策略的代表算法为:CornerNet和CenterNet相关论文1相关论文2空洞卷积基础知识空洞卷积引入了一个称为 “ 扩张率(dilation rate)”的超参数(hyper-parameter),该参数定义了卷积核处理数据时各值的间距。保证在卷积过程中,能够不通过下采样而增加感受野,经常被用在图像分割领域当中。空洞卷积与普通卷积的相同点在于,卷积核的大小是一样的,在神经网络中即参数数量不变,区别在于空洞卷积具有更大的感受野。潜在.原创 2021-04-15 21:28:21 · 2379 阅读 · 2 评论 -
YOLO系列目标检测算法笔记
YOLO V1(2016)YOLO将物体检测作为回归问题求解。基于一个单独的end-to-end网络,完成从原始图像的输入到物体位置和类别的输出。YOLO 的核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别。基本流程:将图片划分为 77=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共 492=98 个bounding box,然后通过NMS等。网络模型YOLO将输入图像分原创 2021-01-25 00:18:35 · 1339 阅读 · 0 评论 -
SSD论文阅读笔记
SSD网络主体设计的思想是特征分层提取,并依次进行边框回归和分类。因为不同层次的特征图能代表不同层次的语义信息,低层次的特征图能代表低层语义信息(含有更多的细节),能提高语义分割质量,适合小尺度目标的学习。高层次的特征图能代表高层语义信息,能光滑分割结果,适合对大尺度的目标进行深入学习。特点有三个:1、采用卷积进行检测;2、设置Default boxes;3、采用多尺度特征图用于检测Background1、每个网格只能预测一个物体,容易漏检,召回率低;2、对于物体的额尺度比较敏感,小物体检测不好,原创 2021-01-24 17:02:11 · 270 阅读 · 0 评论