时间复杂度介绍

时间复杂度

O ( 1 ) O(1) O(1)

首先你必须明确一个概念, O ( 1 ) O(1) O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O ( 1 ) O(1) O(1,而不是 O ( 3 ) O(3) O(3)

int i = 8;
int j = 6; 
int sum = i + j;

只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。

O ( l o g n ) O(logn) O(logn) O ( n l o g n ) O(nlogn) O(nlogn)

对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。我通过一个例子来说明一下。

i=1;

while (i <= n)
    { 
        i = i * 2; 
    }

根据我们前面讲的复杂度分析方法,第三行代码是循环执行次数最多的。所以,我们只要能计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。

从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2。当大于 n 时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:

所以,我们只要知道 x x x 值是多少,就知道这行代码执行的次数了。通过 2 x = n 2x=n 2x=n 求解 x x x 这个问题我们想高中应该就学过了,我就不多说了。 x = l o g 2 n x=log_2n x=log2n,所以,这段代码的时间复杂度就是 O ( l o g 2 n ) O(log_2n) O(log2n)

现在,我把代码稍微改下,你再看看,这段代码的时间复杂度是多少?

i=1; 
while (i <= n) 
    { 
        i = i * 3; 
    }

根据我刚刚讲的思路,很简单就能看出来,这段代码的时间复杂度为 O ( l o g 3 n ) O(log_3n) O(log3n)

实际上,不管是以 2 为底、以 3 为底,还是以 10 为底,我们可以把所有对数阶的时间复杂度都记为 O ( l o g n ) O(logn) O(logn)。为什么呢?

我们知道,对数之间是可以互相转换的, l o g 3 n log_3n log3n 就等于 l o g 3 2 ∗ l o g 2 n log_32 * log_2n log32log2n,所以 O ( l o g 3 n ) = O ( C ∗ l o g 2 n ) O(log_3n) = O(C * log_2n) O(log3n)=O(Clog2n),其中 C = l o g 3 2 C=log_32 C=log32 是一个常量。基于我们前面的一个理论:在采用大 O 标记复杂度的时候,可以忽略系数,即 O ( C f ( n ) ) = O ( f ( n ) ) O(Cf(n)) = O(f(n)) O(Cf(n))=O(f(n))。所以, O ( l o g 2 n ) O(log_2n) O(log2n) 就等于 O ( l o g 3 n ) O(log_3n) O(log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。

如果你理解了我前面讲的 O ( l o g n ) O(logn) O(logn),那 O ( n l o g n ) O(nlogn) O(nlogn) 就很容易理解了。还记得我们刚讲的乘法法则吗?如果一段代码的时间复杂度是 O ( l o g n ) O(logn) O(logn),我们循环执行 n 遍,时间复杂度就是 O ( n l o g n ) O(nlogn) O(nlogn) 了。而且, O ( n l o g n ) O(nlogn) O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O ( n l o g n ) O(nlogn) O(nlogn)

O ( m + n ) 、 O ( m ∗ n ) O(m+n)、O(m*n) O(m+n)O(mn)

我们再来讲一种跟前面都不一样的时间复杂度,代码的复杂度由两个数据的规模来决定。

int cal(int m, int n) {
  int sum_1 = 0;
  int i = 1;
  for (; i < m; ++i) {
    sum_1 = sum_1 + i;
  }

  int sum_2 = 0;
  int j = 1;
  for (; j < n; ++j) {
    sum_2 = sum_2 + j;
  }

  return sum_1 + sum_2;
}

从代码中可以看出,m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O ( m + n ) O(m+n) O(m+n)

针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为: T 1 ( m ) + T 2 ( n ) = O ( f ( m ) + g ( n ) ) T1(m) + T2(n) = O(f(m) + g(n)) T1(m)+T2(n)=O(f(m)+g(n))。但是乘法法则继续有效: T 1 ( m ) ∗ T 2 ( n ) = O ( f ( m ) ∗ f ( n ) ) T1(m)*T2(n) = O(f(m) * f(n)) T1(m)T2(n)=O(f(m)f(n))

转自《数据结构与算法之美》

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值