深度学习
文章平均质量分 80
永永夜
good good study, day day up!
展开
-
(译)理解 LSTM 网络 (Understanding LSTM Networks by colah)
@翻译:huangyongye原文链接: Understanding LSTM Networks前言:其实之前就已经用过 LSTM 了,是在深度学习框架 keras 上直接用的,但是到现在对LSTM详细的网络结构还是不了解,心里牵挂着难受呀!今天看了 tensorflow 文档上面推荐的这篇博文,看完这后,焕然大悟,对 LSTM 的结构理解基本上没有太大问题。此博文写得真真真好!!!为了帮翻译 2017-02-28 16:38:14 · 64876 阅读 · 16 评论 -
ubuntu 下GPU版的 tensorflow / keras的环境搭建
本文主要介绍如何在 ubuntu 系统中配置 GPU 版本的 tensorflow 环境。主要包括:- cuda 安装- cudnn 安装- tensorflow 安装- keras 安装原创 2016-12-16 17:11:51 · 9638 阅读 · 0 评论 -
tensorflow 问题与解决
1.no supported kernel for GPU devices is available.# 加上下面一行就可以使用 个gpu了config = tf.ConfigProto(allow_soft_placement=True)# 这一行设置 gpu 随使用增长,我一般都会加上config.gpu_options.allow_growth = True原创 2017-11-23 16:38:34 · 12559 阅读 · 6 评论 -
TensorFlow入门(五)多层 LSTM 通俗易懂版
欢迎转载,但请务必注明原文出处及作者信息。@author: huangyongye @creat_date: 2017-03-09 前言: 根据我本人学习 TensorFlow 实现 LSTM 的经历,发现网上虽然也有不少教程,其中很多都是根据官方给出的例子,用多层 LSTM 来实现 PTBModel 语言模型,比如: tensorflow笔记:多层LSTM代码分析 但是感觉这些例子还原创 2017-03-10 12:28:59 · 138687 阅读 · 94 评论 -
TensorFlow入门(八)tensorboard 的一个简单示例
关于 tensorboard 的一点心得1.一定要学会使用 tf.variable_scope() 和 tf.name_scope(),否则稍微复杂一点的网络都会乱七八糟。你可以通过上图中的 graph 来看看自己构建的网络结构。2.使用 tensorboard 来看 training 和 validation 的 loss 和 accuracy 变化对于调参非常非常有帮助。经验足的炼丹选手通过原创 2017-11-21 16:45:38 · 8488 阅读 · 1 评论 -
我的Tensorflow学习之路
最近两年深度学习真的是火的不要不要的,关于深度学习,每个人都有自己的看法。有人说就是炼丹,得个准确率召回率什么的,拿到实际中,问问为什么,都答不上来。各种连代码都没写过的人,也纷纷表示这东西就是小孩堆积木,然后整个大功耗的服务器跑上几天,调调参数。然后每个实验室招生,都说自己是做什么深度学习,机器 学习,大数据分析的,以此来吸引学生。可是可是,他们实验室很可能连一块 GPU 都没有。小时候,我原创 2017-09-27 16:36:58 · 24199 阅读 · 13 评论 -
2017知乎看山杯总结(多标签文本分类)
关于比赛详情,请戳:2017 知乎看山杯机器学习挑战赛代码:https://github.com/yongyehuang/zhihu-text-classification 基于:python 2.7, TensorFlow 1.2.1任务描述:参赛者需要根据知乎给出的问题及话题标签的绑定关系的训练数据,训练出对未标注数据自动标注的模型。标注数据中包含 300 万个问题,每个问题有 1 个或多个标原创 2017-08-31 21:59:53 · 24559 阅读 · 10 评论 -
TensorFlow入门(三)多层 CNNs 实现 mnist分类
深入MNISTrefer: http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_pros.html @author: huangyongye @date: 2017-02-24之前在keras中用同样的网络和同样的数据集来做这个例子的时候。keras占用了 5647M 的显存(训练过程中设了 validation_s原创 2017-02-25 17:56:50 · 14059 阅读 · 11 评论 -
TensorFlow入门(七) 充分理解 name / variable_scope
欢迎转载,但请务必注明原文出处及作者信息。@author: huangyongye @creat_date: 2017-03-08 前言: 本例子主要介绍 name_scope 和 variable_scope 的正确使用方式,学习并理解本例之后,你就能够真正读懂 TensorFlow 的很多代码并能够清晰地理解模型结构了。之前写过一个例子了: TensorFlow入门(四) name / v原创 2017-04-26 17:27:22 · 51087 阅读 · 8 评论 -
TensorFlow入门(四) name / variable_scope 的使用
name/variable_scope 的作用欢迎转载,但请务必注明原文出处及作者信息。@author: huangyongye @creat_date: 2017-03-08 refer to: Sharing Variables name / variable_scope 详细理解请看: TensorFlow入门(七) 充分理解 name / variable_scope* 起因:在运行原创 2017-03-08 18:08:55 · 24962 阅读 · 1 评论 -
TensorFlow入门(一)基本用法
TensorFlow入门(一)基本用法refer to: http://wiki.jikexueyuan.com/project/tensorflow-zh/get_started/basic_usage.html @author: huangyongye @date: 2017-02-25本例子主要是按照 tensorflow的中文文档来学习 tensorflow 的基本用法。按照文档说明,主原创 2017-02-25 16:37:06 · 46403 阅读 · 9 评论 -
TensorFlow入门(二)简单前馈网络实现 mnist 分类
两层FC层做分类:MNISTrefer: http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html @author: huangyongye @date: 2017-02-24在本教程中,我们来实现一个非常简单的两层全连接层来完成MNIST数据的分类问题。 输入[-1,28*28], FC1原创 2017-02-25 16:40:15 · 7618 阅读 · 4 评论 -
(译)神经网络基础(1):Logistic 回归
点击阅读原文Logistic 回归本例子包括以下内容: * logistic sigmoid 函数 * 交叉熵(Cross-entropy)损失函数在分类问题中,我们希望神经网络最后输出每个类别的概率分布 tt 。对于二分类问题, t=1t=1 或者 t=0t=0,我们可以使用 logistic 回归 中的 logistic sigmoid 函数。下面的内容将会介绍 logistic sigm翻译 2017-05-04 19:21:49 · 2605 阅读 · 0 评论 -
(译)神经网络基础(2):Softmax 分类函数
Softmax 分类函数本例子包括以下内容: * softmax 函数 * 交叉熵(Cross-entropy) 损失函数在上一个例子中,我们介绍了如何利用 logistic 函数来处理二分类问题。对于多分类问题,在处理多项式 logistic 回归(multinomial logistic regression)中,用到 logistic 函数的一种扩展形式,叫做 softmax 函数。下面的翻译 2017-05-05 16:54:58 · 4742 阅读 · 0 评论 -
seq2seq学习笔记
@author: huangyongye1. RNN基础对于RNN,我看到讲得最通俗易懂的应该是Andrej发的博客: The Unreasonable Effectiveness of Recurrent Neural Networks这里有它的中文翻译版本: 递归神经网络不可思议的有效性如果想了解 LSTM 的原理,可以参考这篇文章:(译)理解 LSTM 网络 (Understanding原创 2016-12-20 11:41:15 · 77970 阅读 · 20 评论 -
为什么要用稀疏自编码而不直接设更少的隐层节点
刚学自编码,以下是本人关于题目问题的一点思考。自编码器是一种非常简单的BP神经网络,是一种无监督学习算法。使用一个三层(只有一个隐含层)的自编码网络,然后设置隐含节点的数量少于输入层节点,就能够轻松地实现特征降维。如图:refer to: Deep Learning(深度学习)学习笔记整理系列之(四) 如果隐藏节点比可视节点(输入、输出)少的话,由于被迫的降维,自编码器会自动习得训练样本的特征原创 2016-12-23 21:42:26 · 3721 阅读 · 0 评论