当前搜索:

[置顶] 我的Tensorflow学习之路

最近两年深度学习真的是火的不要不要的,关于深度学习,每个人都有自己的看法。有人说就是炼丹,得个准确率召回率什么的,拿到实际中,问问为什么,都答不上来。各种连代码都没写过的人,也纷纷表示这东西就是小孩堆积木,然后整个大功耗的服务器跑上几天,调调参数。然后每个实验室招生,都说自己是做什么深度学习,机器...
阅读(6712) 评论(3)

[置顶] (译)理解 LSTM 网络 (Understanding LSTM Networks by colah)

@翻译:huangyongye 原文链接: Understanding LSTM Networks 前言:其实之前就已经用过 LSTM 了,是在深度学习框架 keras 上直接用的,但是到现在对LSTM详细的网络结构还是不了解,心里牵挂着难受呀!今天看了 tensorflow 文档上面推荐的这...
阅读(18657) 评论(8)

Sketch Learning - SVG 生成 PNG 和坐标序列

整个项目的代码在我的 GitHub 上面: https://github.com/yongyehuang/svg_parser ,直接 download 后可以使用。 首先需要安装的一些 python 库: pip install svgwrite pip install svgpathto...
阅读(185) 评论(0)

Sketch Learning - SVG 是什么?

SVG 简介 在 Sketch(草图)研究中,我们经常会遇到 SVG 格式的图像文件。和 PNG 不同,SVG是一种矢量图,它可以保存草图绘图过程中每个笔画的坐标信息。所以,理解 SVG 对于研究草图是很有意义的。 PNG 实际上是像素点,是一个矩阵,比如 RGB 三通道的 224 * 224...
阅读(154) 评论(0)

XGBOOST + LR 模型融合 python 代码

XGBOOST + LR (XGBOOST grid search) 先留个广告,最近做一个数据挖掘的比赛,主要用的就是 xgboost,等比赛完后年前好好整理代码开源,到时候代码会比下面整份完整。 XGBOOST + LR 是 CTR 常用的一种方式。下面是实现 XGBOOST + LR 的...
阅读(981) 评论(2)

LR(Logistic Regression) & XGBOOST 学习笔记

LR(Logistic Regression) & XGBOOST 在 CRT中的应用 此文将持续更新,欢迎指导交流~ 立志要成为一位优秀炼丹师的我搞起 CRT 来突然压力山大。数据是最最主要的原因,而且毕竟调得少,慢慢攒点经验吧。 在 CRT 中,最大的两个问题就是: - 数据不...
阅读(864) 评论(0)

二分类结果分析工具函数

下面代码是我总结的针对二分类问题的预测结果分析工具函数。 代码中有详细的文档说明。所以可以直接看代码。# -*- coding:utf-8 -*-from __future__ import print_function from __future__ import divisionimport...
阅读(368) 评论(0)

tensorflow 问题与解决

1.no supported kernel for GPU devices is available. # 加上下面一行就可以使用 个gpu了 config = tf.ConfigProto(allow_soft_placement=True) # 这一行设置 gpu 随使用增长,我一般都会加上...
阅读(1416) 评论(3)

TensorFlow入门(十-III)tfrecord 图片数据 读写

本例代码:https://github.com/yongyehuang/Tensorflow-Tutorial/tree/master/python/the_use_of_tfrecord 关于 tfrecord 的使用,分别介绍 tfrecord 进行三种不同类型数据的处理方法。 - 维度固定...
阅读(1539) 评论(2)

TensorFlow入门(十-II)tfrecord 可变长度的序列数据

本例代码:https://github.com/yongyehuang/Tensorflow-Tutorial/tree/master/python/the_use_of_tfrecord 关于 tfrecord 的使用,分别介绍 tfrecord 进行三种不同类型数据的处理方法。 - 维度固定...
阅读(1701) 评论(3)

TensorFlow入门(十-I)tfrecord 固定维度数据读写

本例代码:https://github.com/yongyehuang/Tensorflow-Tutorial/tree/master/python/the_use_of_tfrecord 关于 tfrecord 的使用,分别介绍 tfrecord 进行三种不同类型数据的处理方法。 - 维度固定...
阅读(1202) 评论(0)

TensorFlow入门(九)使用 tf.train.Saver()保存模型

关于模型保存的一点心得saver = tf.train.Saver(max_to_keep=3)在定义 saver 的时候一般会定义最多保存模型的数量,一般来说,如果模型本身很大,我们需要考虑到硬盘大小。如果你需要在当前训练好的模型的基础上进行 fine-tune,那么尽可能多的保存模型,后继 f...
阅读(2480) 评论(0)

TensorFlow入门(八)tensorboard 的一个简单示例

关于 tensorboard 的一点心得 1.一定要学会使用 tf.variable_scope() 和 tf.name_scope(),否则稍微复杂一点的网络都会乱七八糟。你可以通过上图中的 graph 来看看自己构建的网络结构。 2.使用 tensorboard 来看 training 和 v...
阅读(1663) 评论(0)

2017知乎看山杯总结(多标签文本分类)

关于比赛详情,请戳:2017 知乎看山杯机器学习挑战赛代码:https://github.com/yongyehuang/zhihu-text-classification 基于:python 2.7, TensorFlow 1.2.1任务描述:参赛者需要根据知乎给出的问题及话题标签的绑定关系的...
阅读(7141) 评论(5)

Python+不同的数据存储方式比较

本文来探索一下python中提供的各种数据保存格式的性能如何。主要以一个 ndarray 格式的数据进行处理分析。包括下面几种方式: .bin格式, tofile() 和 fromfile() .npy格式,save() 和 load() .txt 或者 .csv格式,savetxt() 和 lo...
阅读(1577) 评论(0)

python+HMM之维特比解码

HMM 回顾《统计学习方法》 p.174隐马尔科夫模型(HMM)有三个基本的问题 (1)概率计算问题。给定模型 λ=(A,B,Pi)\lambda = (A, B, Pi) 和观测序列 O(o1,o2,...,oT)O(o_1, o_2, ..., o_T),计算在模型 λ\lambda 下观测序...
阅读(1604) 评论(0)

pandas apply 函数 多进程实现

@creat_data: 2017-05-08 @author: huangyongye 前言: 在进行数据处理的时候,我们经常会用到 pandas 。但是 pandas 本身好像并没有提供多进程的机制。本文将介绍如何来自己实现 pandas (apply 函数)的多进程执行。其中,我们主要借...
阅读(4543) 评论(0)

pymongo 和 xpath 基本操作

@creat_data: 2017-05-01 @author: huangyongye前言: 相信有不少人和我一样,最开始学习 python 就是为了写个爬虫脚本从网上抓数据。第一次从网页上抓取信息的感觉很爽。那时候用得最多的莫过于正则表达式,但是很久没用,基本也都忘光了。后来学习了 xpat...
阅读(735) 评论(0)

(译)神经网络基础(2):Softmax 分类函数

Softmax 分类函数本例子包括以下内容: * softmax 函数 * 交叉熵(Cross-entropy) 损失函数在上一个例子中,我们介绍了如何利用 logistic 函数来处理二分类问题。对于多分类问题,在处理多项式 logistic 回归(multinomial logistic ...
阅读(1910) 评论(0)

(译)神经网络基础(1):Logistic 回归

点击阅读原文Logistic 回归本例子包括以下内容: * logistic sigmoid 函数 * 交叉熵(Cross-entropy)损失函数在分类问题中,我们希望神经网络最后输出每个类别的概率分布 tt 。对于二分类问题, t=1t=1 或者 t=0t=0,我们可以使用 logist...
阅读(1456) 评论(0)
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 30万+
    积分: 2202
    排名: 2万+
    博客专栏
    最新评论