因为本程序是提取HOG特征,使用SVM进行分类的,所以大概了解下HOG的一些知识,其中我觉得怎么计算图像HOG特征的维度会对程序了解有帮助
关于HOG,我们可以参考:
http://gz-ricky.blogbus.com/logs/85326280.html
http://blog.csdn.net/raodotcong/article/details/6239431
关于手写的数字0-9的数据库下载地址和如何生成此数据库HOG特征的xml文件可以参考文章开头的参考博客。
本人提供一个已经训练好的关于此库我生成的xml文件,下载地址:
http://pan.baidu.com/s/1qXSYp
训练模型
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
#include <iostream>
#include <opencv2/opencv.hpp>
#include <fstream>
using
namespace
std;
using
namespace
cv;
int
main()
{
vector<string> img_path;
//输入文件名变量
vector<
int
> img_catg;
int
nLine = 0;
string buf;
ifstream svm_data(
"D:/project/HOG/t10k-images-bmp/t10k-images/result.txt"
);
//训练样本图片的路径都写在这个txt文件中,使用bat批处理文件可以得到这个txt文件
unsigned
long
n;
while
( svm_data )
//将训练样本文件依次读取进来
{
if
( getline( svm_data, buf ) )
{
nLine ++;
if
( nLine % 2 == 0 )
//注:奇数行是图片全路径,偶数行是标签
{
img_catg.push_back(
atoi
( buf.c_str() ) );
//atoi将字符串转换成整型,标志(0,1,2,...,9),注意这里至少要有两个类别,否则会出错
}
else
{
img_path.push_back( buf );
//图像路径
}
}
}
svm_data.close();
//关闭文件
CvMat *data_mat, *res_mat;
int
nImgNum = nLine / 2;
//nImgNum是样本数量,只有文本行数的一半,另一半是标签
data_mat = cvCreateMat( nImgNum, 324, CV_32FC1 );
//第二个参数,即矩阵的列是由下面的descriptors的大小决定的,可以由descriptors.size()得到,且对于不同大小的输入训练图片,这个值是不同的
cvSetZero( data_mat );
//类型矩阵,存储每个样本的类型标志
res_mat = cvCreateMat( nImgNum, 1, CV_32FC1 );
cvSetZero( res_mat );
IplImage* src;
IplImage* trainImg=cvCreateImage(cvSize(28,28),8,3);
//需要分析的图片,这里默认设定图片是28*28大小,所以上面定义了324,如果要更改图片大小,可以先用debug查看一下descriptors是多少,然后设定好再运行
//处理HOG特征
for
( string::size_type i = 0; i != img_path.size(); i++ )
{
src=cvLoadImage(img_path[i].c_str(),1);
if
( src == NULL )
{
cout<<
" can not load the image: "
<<img_path[i].c_str()<<endl;
continue
;
}
cout<<
"deal with\t"
<<img_path[i].c_str()<<endl;
cvResize(src,trainImg);
HOGDescriptor *hog=
new
HOGDescriptor(cvSize(28,28),cvSize(14,14),cvSize(7,7),cvSize(7,7),9);
vector<
float
>descriptors;
//存放结果
hog->compute(trainImg, descriptors,Size(1,1), Size(0,0));
//Hog特征计算
cout<<
"HOG dims: "
<<descriptors.size()<<endl;
n=0;
for
(vector<
float
>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
{
cvmSet(data_mat,i,n,*iter);
//存储HOG特征
n++;
}
cvmSet( res_mat, i, 0, img_catg[i] );
cout<<
"Done !!!: "
<<img_path[i].c_str()<<
" "
<<img_catg[i]<<endl;
}
CvSVM svm;
//新建一个SVM
CvSVMParams param;
//这里是SVM训练相关参数
CvTermCriteria criteria;
criteria = cvTermCriteria( CV_TERMCRIT_EPS, 1000, FLT_EPSILON );
param = CvSVMParams( CvSVM::C_SVC, CvSVM::RBF, 10.0, 0.09, 1.0, 10.0, 0.5, 1.0, NULL, criteria );
svm.train( data_mat, res_mat, NULL, NULL, param );
//训练数据
//保存训练好的分类器
svm.save(
"HOG_SVM_DATA.xml"
);
cout<<
"HOG_SVM_DATA.xml is saved !!! \n exit program"
<<endl;
cvReleaseMat( &data_mat );
cvReleaseMat( &res_mat );
cvReleaseImage(&trainImg);
return
0;
}
|
1
|
D:/project/HOG/t10k-images-bmp/t10k-images/result.txt 的生成方法<br>使用createpath.py脚本
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
import
os, sys
def
get_filepaths(directory):
file_paths
=
[]
# List which will store all of the full filepaths.
for
root, directories, files
in
os.walk(directory):
for
filename
in
files:
# Join the two strings in order to form the full filepath.
filepath
=
os.path.join(root, filename)
file_paths.append(filepath)
# Add it to the list.
return
file_paths
# Self-explanatory.
lists
=
get_filepaths(os.path.dirname(os.path.abspath(__file__)))
with
open
(
'result.txt'
,
'a'
) as f:
for
url
in
lists:
if
(os.path.basename(url).startswith(
'0_'
)):
f.write(url)
f.write(
'\n'
)
f.write(
'0\n'
)
if
(os.path.basename(url).startswith(
'1_'
)):
f.write(url)
f.write(
'\n'
)
f.write(
'1\n'
)
if
(os.path.basename(url).startswith(
'2_'
)):
f.write(url)
f.write(
'\n'
)
f.write(
'2\n'
)
if
(os.path.basename(url).startswith(
'3_'
)):
f.write(url)
f.write(
'\n'
)
f.write(
'3\n'
)
if
(os.path.basename(url).startswith(
'4_'
)):
f.write(url)
f.write(
'\n'
)
f.write(
'4\n'
)
if
(os.path.basename(url).startswith(
'5_'
)):
f.write(url)
f.write(
'\n'
)
f.write(
'5\n'
)
if
(os.path.basename(url).startswith(
'6_'
)):
f.write(url)
f.write(
'\n'
)
f.write(
'6\n'
)
if
(os.path.basename(url).startswith(
'7_'
)):
f.write(url)
f.write(
'\n'
)
f.write(
'7\n'
)
if
(os.path.basename(url).startswith(
'8_'
)):
f.write(url)
f.write(
'\n'
)
f.write(
'8\n'
)
if
(os.path.basename(url).startswith(
'9_'
)):
f.write(url)
f.write(
'\n'
)
f.write(
'9\n'
)
|
1
|
生成result.txt
|
1
|
使用模型
|
#include <iostream> #include <opencv2/opencv.hpp> using namespace std; using namespace cv; int main() { IplImage *test; char result[300]; //存放预测结果 CvSVM svm; svm.load("d:\\HOG_SVM_DATA.xml");//加载训练好的xml文件,这里训练的是10K个手写数字 //检测样本 test = cvLoadImage("d:\\test.bmp", 1); //待预测图片,用系统自带的画图工具随便手写 if (!test) { cout<<"not exist"<<endl; return -1; } cout<<"load image done"<<endl; IplImage* trainTempImg=cvCreateImage(cvSize(28,28),8,3); cvZero(trainTempImg); cvResize(test,trainTempImg); HOGDescriptor *hog=new HOGDescriptor(cvSize(28,28),cvSize(14,14),cvSize(7,7),cvSize(7,7),9); vector<float>descriptors;//存放结果 hog->compute(trainTempImg, descriptors,Size(1,1), Size(0,0)); //Hog特征计算 cout<<"HOG dims: "<<descriptors.size()<<endl; //打印Hog特征维数 ,这里是324 CvMat* SVMtrainMat=cvCreateMat(1,descriptors.size(),CV_32FC1); int n=0; for(vector<float>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++) { cvmSet(SVMtrainMat,0,n,*iter); n++; } int ret = svm.predict(SVMtrainMat);//检测结果 sprintf(result, "%d\r\n",ret ); cvNamedWindow("dst",1); cvShowImage("dst",test); cout<<"result:"<<result<<endl; waitKey (); cvReleaseImage(&test); cvReleaseImage(&trainTempImg); return 0; }
工程源码(MFC):
http://pan.baidu.com/s/1rDQbO
程序下载(裸机可运行,无需环境):
http://pan.baidu.com/s/1byQeX
QT控制台版本(包含手写数据库,训练模型,使用模型)
http://pan.baidu.com/s/1pJ45bwZ
作者:
小菜鸟_yang
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。