基于自动微分的全波形反演 (ADFWI)
ADFWI 是博主在硕士研究生阶段的主要研究工作之一,旨在利用自动微分方法简化传统反演方法的推导和实现过程。该框架为波形反演领域的研究、目标函数、优化算法、正则化方法和深度神经网络的开发与测试提供了基础平台。其特性主要包括:
(1)ADFWI 对传统方法的贡献主要体现在以下几个方面:
- 简化推导和实现:通过自动微分的引入,ADFWI 显著减少了推导和实现的复杂性,使得研究人员能够更快速地实现和测试新方法。
- 灵活建模:ADFWI 支持对各种物理模型的波传播进行灵活建模,为研究者提供更大的自由度,以更好地适应实际应用需求。
- 集成先进技术:ADFWI 集成了多种先进的目标函数和优化算法,使得反演过程更加高效和准确。
(2)ADFWI 对 AI 相关研究的贡献在于提供了一种特殊的网络层,可以为深度神经网络训练引入物理约束。ADFWI 支持反向传播梯度,其功能相当于深度神经网络中的特殊层,确保学习过程满足波动方程的要求。
👩💻 介绍
ADFWI 是一个开源框架,旨在通过最小化观测与模拟地震数据之间的差异,实现高分辨率的地下参数估计。借助自动微分 (AD),ADFWI 简化了全波形反演 (FWI) 的推导和实现,提升了方法设计和评估的效率。它支持多种介质的波传播,包括各向同性声波、各向同性弹性波,以及垂直各向异性 (VTI) 和倾斜各向异性 (TTI) 模型。
此外,ADFWI 提供了全面的目标函数、正则化技术、优化算法和深度神经网络工具集。这些丰富的工具帮助研究人员进行实验和比较,探索创新方法,精炼他们的研究方法。
⚡️ 安装
要安装基于自动微分的全波形反演 (ADFWI) 框架,请按照以下步骤操作:
-
确保先决条件
在开始之前,请确保您的系统上已安装以下软件:- Python 3.8 或更高版本:从官方网站下载:Python Downloads。
- pip(Python包安装器)。
-
创建虚拟环境(可选,但推荐)
建议创建虚拟环境来管理项目依赖,您可以使用venv
或conda
。
例如,使用conda
:conda create --name adfwi-env python=3.8 conda activate adfwi-env
-
安装所需包
方法 1:克隆 GitHub 仓库
此方法提供最新版本,可能更适合您的研究:git clone https://github.com/liufeng2317/ADFWI.git cd ADFWI
然后,安装所需的包:
pip install -r requirements.txt
方法 2:通过 pip 安装
或者,您可以直接从 PyPI 安装 ADFWI:pip install ADFWI-Torch
-
验证安装
要确保 ADFWI 安装正确,可以运行示例文件夹中的任意示例。 -
故障排除
如果在安装过程中遇到任何问题,请检查 GitHub 仓库的 Issues 部分以获取潜在解决方案或报告新问题。
👾 示例
有关示例和使用说明,请查看 GitHub 仓库:ADFWI GitHub Repository。您将在那里找到各种示例,展示如何有效地利用 ADFWI 框架。
📝 特征
- 多物理方程:
- Iso-Acoustic
- Iso-Elastic
- VTI-Elastic
- TTI-Elastic
- 多目标函数
- L1-norm
- L2-norm
- Smooth-L1 norm
- Envelope
- Global Correlation
- T-Distribution (StudentT)
- Soft Dynamic Time Wrapping (SoftDTW)
- Wasserstein Distance-based with Sinkhorn (Wassrestein)
- 多优化算法
- SGD
- ASGD
- RMSProp
- Adagrad
- Adam
- AdamW
- NAdam
- RAdam
- 融合深度学习
- DNNs reparameterize the Earth Model for learnable regularization
- Droupout for access the inversion uncertainty
- 内存管理
- Mini-batch
- Checkpointing
🔰 联系
@software{LiuFeng2317,
author = {Feng Liu, GuangYuan Zou, \& Haipeng Li},
title = {ADFWI},
month = July,
year = 2024,
version = {v1.1},
}