从其他视角认识梯度反向传播(BP):基于自动微分的全波形反演 (ADFWI)

基于自动微分的全波形反演 (ADFWI)

ADFWI 是博主在硕士研究生阶段的主要研究工作之一,旨在利用自动微分方法简化传统反演方法的推导和实现过程。该框架为波形反演领域的研究、目标函数、优化算法、正则化方法和深度神经网络的开发与测试提供了基础平台。其特性主要包括:

(1)ADFWI 对传统方法的贡献主要体现在以下几个方面:

  • 简化推导和实现:通过自动微分的引入,ADFWI 显著减少了推导和实现的复杂性,使得研究人员能够更快速地实现和测试新方法。
  • 灵活建模:ADFWI 支持对各种物理模型的波传播进行灵活建模,为研究者提供更大的自由度,以更好地适应实际应用需求。
  • 集成先进技术:ADFWI 集成了多种先进的目标函数和优化算法,使得反演过程更加高效和准确。

(2)ADFWI 对 AI 相关研究的贡献在于提供了一种特殊的网络层,可以为深度神经网络训练引入物理约束。ADFWI 支持反向传播梯度,其功能相当于深度神经网络中的特殊层,确保学习过程满足波动方程的要求。


👩‍💻 介绍

ADFWI 是一个开源框架,旨在通过最小化观测与模拟地震数据之间的差异,实现高分辨率的地下参数估计。借助自动微分 (AD),ADFWI 简化了全波形反演 (FWI) 的推导和实现,提升了方法设计和评估的效率。它支持多种介质的波传播,包括各向同性声波、各向同性弹性波,以及垂直各向异性 (VTI) 和倾斜各向异性 (TTI) 模型。

此外,ADFWI 提供了全面的目标函数、正则化技术、优化算法和深度神经网络工具集。这些丰富的工具帮助研究人员进行实验和比较,探索创新方法,精炼他们的研究方法。


⚡️ 安装

要安装基于自动微分的全波形反演 (ADFWI) 框架,请按照以下步骤操作:

  1. 确保先决条件
    在开始之前,请确保您的系统上已安装以下软件:

    • Python 3.8 或更高版本:从官方网站下载:Python Downloads
    • pip(Python包安装器)。
  2. 创建虚拟环境(可选,但推荐)
    建议创建虚拟环境来管理项目依赖,您可以使用 venvconda
    例如,使用 conda

    conda create --name adfwi-env python=3.8
    conda activate adfwi-env
    
  3. 安装所需包
    方法 1:克隆 GitHub 仓库
    此方法提供最新版本,可能更适合您的研究:

    git clone https://github.com/liufeng2317/ADFWI.git
    cd ADFWI
    

    然后,安装所需的包:

    pip install -r requirements.txt
    

    方法 2:通过 pip 安装
    或者,您可以直接从 PyPI 安装 ADFWI:

      pip install ADFWI-Torch
    
  4. 验证安装
    要确保 ADFWI 安装正确,可以运行示例文件夹中的任意示例。

  5. 故障排除
    如果在安装过程中遇到任何问题,请检查 GitHub 仓库的 Issues 部分以获取潜在解决方案或报告新问题。


👾 示例

有关示例和使用说明,请查看 GitHub 仓库:ADFWI GitHub Repository。您将在那里找到各种示例,展示如何有效地利用 ADFWI 框架。


📝 特征

  • 多物理方程:
    • Iso-Acoustic
    • Iso-Elastic
    • VTI-Elastic
    • TTI-Elastic
  • 多目标函数
    • L1-norm
    • L2-norm
    • Smooth-L1 norm
    • Envelope
    • Global Correlation
    • T-Distribution (StudentT)
    • Soft Dynamic Time Wrapping (SoftDTW)
    • Wasserstein Distance-based with Sinkhorn (Wassrestein)
  • 多优化算法
    • SGD
    • ASGD
    • RMSProp
    • Adagrad
    • Adam
    • AdamW
    • NAdam
    • RAdam
  • 融合深度学习
    • DNNs reparameterize the Earth Model for learnable regularization
    • Droupout for access the inversion uncertainty
  • 内存管理
    • Mini-batch
    • Checkpointing

🔰 联系

@software{LiuFeng2317,
  author       = {Feng Liu, GuangYuan Zou, \& Haipeng Li},
  title        = {ADFWI},
  month        = July,
  year         = 2024,
  version      = {v1.1},
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

留小星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值