caffe学习笔记
Monster_xlh
学习无止境
展开
-
caffe学习笔记4--solver超参数配置
net:prototxt#所写的net文件所在的位置 type:SGD#caffe中对于非凸函数的求解的优化。caffe中给出了六种优化算法,分别为 Stochastic Gradient Descent(type:“SGD”)随机梯度下降 AdaDelta(type:“AdaDelta”) Adaptive(type:“AdaGrad”) Nesterov’s Accelerated Grad...原创 2018-10-17 23:07:09 · 269 阅读 · 0 评论 -
caffe学习笔记5-制作LMDB数据
caffe提供了相关的脚本,我们只需要打开对里面的某些某块进行编写就可以了 打开.sh文件进行配置 首先是EXAMPLES和DATA两个选项,一般情况下我们制作项目都是新建一个文件夹,然后将相关的layer层和solver配置文件都放到这个文件夹下,那么这时候对应的这两个选项就是填入这个文件夹了 TOOLS,caffe的文件夹中的/caffe/build/tools,那么我们只需要填写前面的绝对路...原创 2018-10-18 22:32:21 · 323 阅读 · 0 评论 -
caffe框架学习笔记1--数据层的编写
数据层是需要第一层用来给模型提供数据的层 layer{ name:“DATA”#这一层的名字命名为_DATA_层 type:“Data”#表明这一层的属性是数据 top:“data” #bottom 表示输入,top表示输出,在数据层中并没有输入层,只有输出层,输出层为x和y,即一 个是输入的数据,另外一个是我们所给定的这个数据的标签 top:“label” include { phase...原创 2018-10-15 23:30:34 · 264 阅读 · 0 评论 -
caffe学习笔记2--卷积层和池化层、激活函数、全连接层的编写
layer{ name:“conv1” type:“Convolution” top:“conv1” bottom:“data”#跟数据层的输出相对应,表示输入的数值的属性,因为在数据层中输出的是data属性,卷积层连接的是数据层,故是data param{ lr_mult:1#对权重参数的定义,W,最终的学习率是solver.prototxt中的base_lr乘以W } param{ lr_mu...原创 2018-10-16 23:19:16 · 959 阅读 · 0 评论 -
caffe学习笔记3--softmax,reshape层,dropout层的编写
softmax层可以输出loss函数或者计算此时的准确率情况 对于loss的计算 通过上面的函数来实现一个归一化的操作,那么此时函数得到的结果就范围就是咋(0-1)之间,得出概率值 layer{ name:“loss” type:“SoftmaxWithLoss” bottom:“ip1” bottom:“label” top:“loss” } 输出prob layer{ name:“prob”...原创 2018-10-17 20:00:10 · 873 阅读 · 0 评论 -
caffe学习笔记6--多labelHDF5制作
要想使用HDF5数据源 需要在layer.prototxt中引入一个layer layer{ name:“data” type:“HDF5Data” top:data top:label hdf5_data_param{ source:“trainlist.txt”#通过Python制作得到的list文件,里面的内容为数据集的路径 batch_size:10 } } hdf5.txt文件内容: 多...原创 2018-10-20 22:14:19 · 493 阅读 · 3 评论