牛客little白月赛43题解

 题目链接:https://ac.nowcoder.com/acm/contest/11220

总结:感觉有点难,重现赛只做对了t1,还是模拟做的,菜是原罪;

分析:t1 : 简单数学 t2 : 数学 t3 : 二进制枚举 t4:数学(全集 - 补集) t5 : DP(线性dp) t6 : 二分图

A:满意的数字

思路:第m个因子就是数本身,数mod自身自然是0,所以每一个数都是“满意的数字”;

ps:就是换个说法输出n,我做的时候竟然大模拟,真无语。。。。

#include <bits/stdc++.h>

using namespace std;

int main()
{
    int t;
    cin >> t;

    while(t --) {
        int n;
        cin >> n;
        cout << n << endl;
    }
    
    return 0;
}

B:牛牛变魔术

思路:1.先考虑一下target是否是a, b中的一种;

           2.不满足1,为奇数,则直接输出-1;

           3.通过对满足条件的最后一次操作进行观察,只要a + b > target / 2即可一次完成,所以不停的对a+b翻倍(同时cnt ++)直到满足上个式子即可;

ps:切入点在于最后一次观察

#include <bits/stdc++.h>
#define int long long

using namespace std;

signed main()
{
    int t;
    cin >> t;
    while(t -- ) {
        int a, b, gol;
        cin >> a >> b >> gol;
        int res = 1;
        
        if(gol == a || gol == b) res = 0;
        else if(gol & 1) res = -1;
        else {
            int k = a + b;
            while(k < gol / 2) k *= 2, res ++;
        }
        cout << res << "\n";
    } 
    return 0;
}

C:木棍游戏

思路:数据非常小,直接用二进制来枚举三条边有哪些棍子组成即可;

时间复杂度:O((1 << n) ^ 3);

处理:避免方案数重复,需满足i & j == 0

海伦公式:p = (a + b + c) / 2, s = p * (p - a) * (p - b) *  (p - c);

ps:调了好久555

#include <bits/stdc++.h>

using namespace std;

int a[10], b[3];

int calc(int x) {
    int res = 0, cnt = 0;
    while(x) {
        if(x & 1)res += a[cnt];
        x >>= 1;
        cnt ++;
    }
    return res;
}

int main()
{
    int n;
    cin >> n;
    
    for(int i = 0; i < n; i ++ ) cin >> a[i];
    double ans = -1;
    for(int i = 1; i < 1 << n; i ++ ) 
        for(int j = 1; j < 1 << n; j ++ )
            if((i & j) == 0)
                for(int k = 1; k < 1 << n; k ++)
                    if((k & j) == 0 && (k & i) == 0) {
                        b[0] = calc(i), b[1] = calc(j), b[2] = calc(k);
                        sort(b, b + 3);
                        //for(int i = 0; i < 3 ; i ++ ) cout << b[i] << " ";
                        //cout << endl;
                        if(b[2] < b[0] + b[1]) {
                            double p = (b[0] + b[1] + b[2]) / 2.0;//注意是乘以2.0
                            double s =sqrt( p * (p - b[0]) * (p - b[1]) * (p - b[2]));
                            ans = max(ans, s);
                        }
                    }                            
    if(ans != -1)
    printf("%.1lf", ans);
    else cout << -1;
    return 0;
}

D:有趣的区间

思路:区间只要有一个1,取或起来必然是奇数。也就是说只要区间全为0的时候, 才不满足题意;

ans = 总区间数 - "无趣的区间数"

处理:一个区间中的子区间数可以数列求和公式推出:n * (n - 1) / 2;

ps:我竟然看成异或了,结果整了半天没整出来(无疑难度大大上升)

#include <bits/stdc++.h>
#define int long long

using namespace std;

int calc(int x) {
    return x * (x + 1) / 2;
}

signed main()
{
    int n;
    cin >> n;
    
    int sum = calc(n), cnt = 0, x;
    for(int i = 0; i < n; i ++ ) {
        cin >> x;
        if(x & 1) {
            sum -= calc(cnt);
            cnt = 0;
        }
        else cnt ++;
    }
    
    sum -= calc(cnt);
    
    cout << sum << endl;
    
    return 0;
}

E:满意的集合

引子:dp问题的优化与思考

思路:我们不妨先想一个朴素做法:如果各个数位相加是3的倍数,那么该数可以被3整除;

状态表示:f[i][j] 表示前i个数中,余数为j的集合数;ans取f[9][0];

状态转移方程:f[i][(j*i+MOD)%3] += f[i-1][MOD];

难点:这个题最难的地方在于MOD的理解,MOD其实就是上一层i中对3取余后的余数,对于本层更新来说,本层的数加上上一层的余数,就是在模3意义下的能够被3整除的集合数

for (int i=1; i<=9; i++) {
    for (int j=0; j<=cnt[i]; j++) {
        for (int MOD=0; MOD<3; MOD++) {
            f[i][(j*i+MOD)%3] = (f[i][(j*i+MOD)%3] + dp[i-1][MOD]) % mod;
        }
    }
}

时间复杂度:O(9 * n * 3) n 取e = 1e9。显然不行

优化:对状态转移方程的优化 : 优化j层----考虑到模3意义下(举例从j = 1开始,同理j = 2, j = 3):i * 1, i * 4.... 相等,所以我们可以一次性加上sum1 = (cnt[i] + 2) / 3次的f[i - 1][MOD]);

#状态转移方程:f[i][(mod + j) % 3] += sum * f[i - 1][j];

#include <bits/stdc++.h>
#define int long long 

using namespace std;

const int mod = 1e9 + 7;

int cnt[10];

int f[10][3];

signed main()
{
    for(int i = 1; i <= 9; i ++ ) cin >> cnt[i];
    
    f[0][0] = 1;
    for(int i = 1; i <= 9; i ++ ) {
        //sum为该数位模3等于j的个数
        int sum1 = (cnt[i] + 2) / 3, sum2 = (cnt[i] + 1) / 3, sum3 = cnt[i] / 3 + 1;
        int mod1 = i % 3, mod2 = (2 * i) % 3, mod3 = (3 * i) % 3;
        for(int j = 0; j < 3; j ++ ) {
            f[i][(mod1 + j) % 3] = (f[i][(mod1 + j) % 3] + sum1 * f[i - 1][j]) % mod;
            f[i][(mod2 + j) % 3] = (f[i][(mod2 + j) % 3] + sum2 * f[i - 1][j]) % mod;
            f[i][(mod3 + j) % 3] = (f[i][(mod3 + j) % 3] + sum3 * f[i - 1][j]) % mod;            
        }
    }
    
    cout << f[9][0];
    
    return 0;
}

ps:此次比赛的最难题,十分有难度

F:全体集合

思路:1.判断一下是否有奇数环,如果有的话,两个人之间的距离(隔着几条边)必定能够通过这个环变为偶数,进而满足题意;

2.无环则判断两个人之间的距离是否是偶数(只判断从一个人到其他人的距离即可)

处理:1.判断是否有奇数环,其实就是判断是否不为二分图(有奇数环则不为二分图),用染色法轻松解决

           2.两人之间的距离是否为偶数,可以通过起点(随便选定一个)来判断是否为同一染色;

#include <bits/stdc++.h>
#define int long long

using namespace std;

const int N = 1e6 + 10;

vector<int> g[N];
int spot[N];
int color[N];

bool dfs(int u, int c) {
    color[u] = c;
    
    for(int i : g[u]) {
        if(!color[i]) {
            if(!dfs(i, 3 - c)) return false;
        }
        else if(color[i] != 3 - c) return false;
    }
    
    return true;
}

signed main()
{
    int n, m, k;
    cin >> n >> m >> k;
    
    for(int i = 0; i < m; i ++ ){
        int a, b;
        cin >> a >> b;
        g[a].push_back(b);
        g[b].push_back(a);
    }
    
    for(int i = 1; i <= k; i ++ ) cin >> spot[i];
    
    if(!dfs(1, 1)) {
        puts("YES");
        return 0;
    }
    
    int c = color[spot[1]];//草
    for(int i = 2; i <= k; i ++ )
        if(color[spot[i]] != c)//颜色不统一说明该点到其他点的距离为奇数,不可以满足题意
        {
            puts("NO");
            return 0;
        }
        puts("YES"); 
        
    return 0;
}

ps1:如果压根就不是连通图的话,在判断染色是否统一的时候,会因为color[spot[i]]  != 0而输出NO(此点未染色)

ps2:int c = color[spot[1]];这段我写成int c = spot[1];直接debug了一个小时

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值