Pandas基础语法NO.4

相关性与协方差的计算

1. Convariance(协方差)

若COV = 0 ,没有关联;
若为正,正相关;
若为负,负相关
但是无法衡量相关性的强弱
在这里插入图片描述在这里插入图片描述在这里插入图片描述

2.Correlation (相关系数)

correlation(只看线性关系):无单位的量数, 介于-1到1 ,衡量两个变量中线性关系的强弱
ρ(X,Y)= COV(X,Y)/σX * σY
ρ = ±1,完全正/负相关
ρ=0,uncorrelated
在这里插入图片描述

a = np.arange(1,10).reshape(3,3)
data2 = pd.DataFrame(a,index=['a','b','c'],columns = ['one','two','three']
data2
   one	two	three
a	1	2	3
b	4	5	6
c	7	8	9

相关性计算

#计算第一列和第二列的相关性系数
data2['one'].corr(data2['two'])

1.0

#返回相关系数矩阵
data2.corr()
   one	two	three
one	1.0	1.0	1.0
two	1.0	1.0	1.0
three	1.0	1.0	1.0

协方差计算

# 计算第一列和第二列的协方差
data2['one'].cov(data2['two'])

9.0
#协方差矩阵
data2.cov()
     one	two	three
one	  9.0	9.0	9.0
two	   9.0	9.0	9.0
three	9.0	9.0	9.0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值