import pandas as pd
import re
from openpyxl import load_workbook
#插入的数据
data = {
'客户ID': [1, 2, 3, 4, 5],
'姓名': ['张三', '李四', '王五', '赵六', '孙七'],
'联系方式': ['13800000000', '13900000000', '13700000000', '13600000000', '13500000000'],
'账户余额': [10000.0, 20000.0, 15000.0, 30000.0, 25000.0],
'贷款类型': ['信用贷款', '房贷', '信用贷款', '车贷', '信用贷款'],
'贷款金额': [50000.0, 300000.0, 60000.0, 100000.0, 70000.0],
'利率': [5.0, 4.5, 5.2, 4.8, 5.1],
'贷款期限(年)': [3, 20, 4, 5, 3]
}
# 保存到Excel文件
df = pd.DataFrame(data)
bank_data = input("请输入新建excel的文件名:")
df.to_excel(f'{bank_data}'+'.xlsx', index=False)
# 读取Excel文件
dy = pd.read_excel(f'{bank_data}'+'.xlsx')
print(dy.head())
'''# 读取现有数据
df = pd.read_excel(f'{bank_data}'+'.xlsx')
# 写入新的Excel文件
df.to_excel('processed_bank_data.xlsx', index=False)'''
# 更新第一个客户的账户余额
dy.at[0, '账户余额'] = 12000.0
# 保存更新后的数据
dy.to_excel('更新数据保存文件.xlsx', index=False)
# 加载现有工作簿
wb = load_workbook(f'{bank_data}'+'.xlsx')
# 创建新的工作表
ws = wb.create_sheet(title="新工作表")
# 保存工作簿
wb.save('新的工作簿.xlsx')
# 删除指定的工作表
if '新工作表' in wb.sheetnames:
del wb['新工作表']
# 保存工作簿
wb.save('工作簿.xlsx')
# 复制指定的工作表
source = wb['Sheet1']
target = wb.copy_worksheet(source)
target.title = "复制的工作表"
# 保存工作簿
wb.save('复制的测试文件.xlsx')
# 查找特定值
result = dy[dy['姓名'] == '张三']
print(result)
# 筛选出贷款金额大于50000的数据
filtered_df = dy[dy['贷款金额'] > 50000]
# 打印筛选结果
print(filtered_df)
# 按账户余额降序排序
sorted_df = dy.sort_values(by='账户余额', ascending=False)
# 打印排序结果
print(sorted_df)
# 按贷款类型分组并计算贷款金额总和
grouped_df = dy.groupby('贷款类型')['贷款金额'].sum()
# 打印分组汇总结果
print(grouped_df)
首先cmd安转pandas库 openpyxl库
import pandas as pd
import re
from openpyxl import load_workbook
#插入的数据
data = {
'客户ID': [1, 2, 3, 4, 5],
'姓名': ['张三', '李四', '王五', '赵六', '孙七'],
'联系方式': ['13800000000', '13900000000', '13700000000', '13600000000', '13500000000'],
'账户余额': [10000.0, 20000.0, 15000.0, 30000.0, 25000.0],
'贷款类型': ['信用贷款', '房贷', '信用贷款', '车贷', '信用贷款'],
'贷款金额': [50000.0, 300000.0, 60000.0, 100000.0, 70000.0],
'利率': [5.0, 4.5, 5.2, 4.8, 5.1],
'贷款期限(年)': [3, 20, 4, 5, 3]
}
# 保存到Excel文件
df = pd.DataFrame(data)
bank_data = input("请输入新建excel的文件名:")
df.to_excel(f'{bank_data}'+'.xlsx', index=False)
# 读取Excel文件
dy = pd.read_excel(f'{bank_data}'+'.xlsx')
print(dy.head())
'''# 读取现有数据
df = pd.read_excel(f'{bank_data}'+'.xlsx')
# 写入新的Excel文件
df.to_excel('processed_bank_data.xlsx', index=False)'''
# 更新第一个客户的账户余额
dy.at[0, '账户余额'] = 12000.0
# 保存更新后的数据
dy.to_excel('更新数据保存文件.xlsx', index=False)
# 加载现有工作簿
wb = load_workbook(f'{bank_data}'+'.xlsx')
# 创建新的工作表
ws = wb.create_sheet(title="新工作表")
# 保存工作簿
wb.save('新的工作簿.xlsx')
# 删除指定的工作表
if '新工作表' in wb.sheetnames:
del wb['新工作表']
# 保存工作簿
wb.save('工作簿.xlsx')
# 复制指定的工作表
source = wb['Sheet1']
target = wb.copy_worksheet(source)
target.title = "复制的工作表"
# 保存工作簿
wb.save('复制的测试文件.xlsx')
# 查找特定值
result = dy[dy['姓名'] == '张三']
print(result)
# 筛选出贷款金额大于50000的数据
filtered_df = dy[dy['贷款金额'] > 50000]
# 打印筛选结果
print(filtered_df)
# 按账户余额降序排序
sorted_df = dy.sort_values(by='账户余额', ascending=False)
# 打印排序结果
print(sorted_df)
# 按贷款类型分组并计算贷款金额总和
grouped_df = dy.groupby('贷款类型')['贷款金额'].sum()
# 打印分组汇总结果
print(grouped_df)