题目:输入一个已经按升序排序过的数组和一个数字,在数组中查找两个数,使得它们的和正好是输入的那个数字。要求时间复杂度是O(n)。如果有多对数字的和等于输入的数字,输出任意一对即可。
例如输入数组1、2、4、7、11、15和数字15。由于4+11=15,因此输出4和11。
解法一:因为只需要输出满足要求的一对数字即可,这里可以设置两个指针,分别指向数组头和尾,然后进行判断。假设数组为a,头指针为h,尾指针为t,输入的和为M,则有下面这几种情况:
1、若a[h]+a[t]==M, 则a[h]和a[t]即为满足条件的一对数。
2、若a[h]+a[t]< M, 说明应该增加两个数的和,则头指针后移。
3、若a[h]+a[t]> M, 说明应该减小两个数的和,则尾指针前移。
这个while循环退出的条件为:找到满足条件的一对数或者h>=t。
这种思路也是原文作者的思路,这个题的想法和之前的“和为N连续正数序列”这题的一种解法相似。
我的代码:
- /*
- * 若有符合条件的一对数,则存入ret1和ret2中,并且返回0
- * 否则返回-1
- *
- * 注意:函数中没有对传入参数进行检测!!
- *
- */
- int foo10(int *arr, int len, int m, int *ret1, int *ret2){
- int h,t;
- int *a = arr;
- h = 0;
- t = len-1;
- while(h<t){
- if(a[h]+a[t]==m){
- *ret1 = a[h];
- *ret2 = a[t];
- return 0;
- }else if(a[h]+a[t]<m)
- h++;
- else
- t--;
- }
- return -1;
- }
解法二:假设有序数组为a,设一个辅助数组b,使得b[i] = M-a[len-1-i],也就是说,使M减去a中的所有元素,并且把这些元素进行升序排序后存入b中。由b[i] = M-a[len-1-i]可得 b[i] + a[len-1-i] = M,那如何把b[i]映射到a中的某个元素呢?我们知道:
b[0] = M - a[len-1]
b[1] = M - a[len-2]
...
b[len-1] = M - a[0]
若a[0] = b[0],则 a[0] = M - a[len-1],则 a[0] + a[len-1] = M。所以,可以这么做:
得到b之后,若存在某个i,使 a[i] = b[i],说明存在符合条件的一对数,为a[i],a[len-1-i]。
写了一个测试代码,没有完全的返回值和参数检测,只是说明这种思路吧:
- int foo10_v2(int *arr, int len, int m){
- int i;
- int *a = arr;
- for(i=0;i<len;++i){
- if(m-a[len-1-i]==a[i])
- printf("[debug]ret1=%d,/tret2=%d/n",a[i],a[len-1-i]);
- }
- return 0;
- }
下面引用原文内容,更好地说明第一种解法:
================= 以下内容引自原文 =======================
分析:如果我们不考虑时间复杂度,最简单想法的莫过去先在数组中固定一个数字,再依次判断数组中剩下的n-1个数字与它的和是不是等于输入的数字。可惜这种思路需要的时间复杂度是O(n2)。
我们假设现在随便在数组中找到两个数。如果它们的和等于输入的数字,那太好了,我们找到了要找的两个数字;如果小于输入的数字呢?我们希望两个数字的和再大一点。由于数组已经排好序了,我们是不是可以把较小的数字的往后面移动一个数字?因为排在后面的数字要大一些,那么两个数字的和也要大一些,就有可能等于输入的数字了;同样,当两个数字的和大于输入的数字的时候,我们把较大的数字往前移动,因为排在数组前面的数字要小一些,它们的和就有可能等于输入的数字了。
我们把前面的思路整理一下:最初我们找到数组的第一个数字和最后一个数字。当两个数字的和大于输入的数字时,把较大的数字往前移动;当两个数字的和小于数字时,把较小的数字往后移动;当相等时,打完收工。这样扫描的顺序是从数组的两端向数组的中间扫描。
问题是这样的思路是不是正确的呢?这需要严格的数学证明。感兴趣的读者可以自行证明一下。
参考代码:
///
// Find two numbers with a sum in a sorted array
// Output: ture is found such two numbers, otherwise false
///
bool FindTwoNumbersWithSum
(
int data[], // a sorted array
unsigned int length, // the length of the sorted array
int sum, // the sum
int& num1, // the first number, output
int& num2 // the second number, output
)
{
bool found = false;
if(length < 1)
return found;
int ahead = length - 1;
int behind = 0;
while(ahead > behind)
{
long long curSum = data[ahead] + data[behind];
// if the sum of two numbers is equal to the input
// we have found them
if(curSum == sum)
{
num1 = data[behind];
num2 = data[ahead];
found = true;
break;
}
// if the sum of two numbers is greater than the input
// decrease the greater number
else if(curSum > sum)
ahead --;
// if the sum of two numbers is less than the input
// increase the less number
else
behind ++;
}
return found;
}
扩展:如果输入的数组是没有排序的,但知道里面数字的范围,其他条件不变,如和在O(n)时间里找到这两个数字?
原文地址:http://zhedahht.blog.163.com/blog/static/2541117420072143251809/