【问题描述】
剪邮票
如【图1.jpg】, 有12张连在一起的12生肖的邮票。
现在你要从中剪下5张来,要求必须是连着的。
(仅仅连接一个角不算相连)
比如,【图2.jpg】,【图3.jpg】中,粉红色所示部分就是合格的剪取。
请你计算,一共有多少种不同的剪取方法。
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
【问题分析】
刚拿到题目时,第一个感觉就是用DFS,从某一个点出发,利用DFS计算从该点出发走满五个格子的情况数,再将所以情况相加即可得到结果。但是!!!!!!如果DFS的话,无法同时向下或者向右走,也就是每次只能向一个方向走。
我们换一个思路吧!!!就是先在12个格子中选五个,再去判断这五个是否连通。因为数据规模比较小,所以这是完完全全可行的!!!!
现在我们就来分别解决这些问题
问题一:12个中选五个,用0表示不选,1表示选择,对7个0和5个1的所有组合情况,那么每一种组合情况,就能代表在图中选择的邮票情况。可以自己写组合的函数,也可以直接调用next_permutation(),后者当然更加方便,本文中也是直接调用next——permutation()来实现12个选5的操作的
问题二:判断选中的5张邮票是否连通。用DFS来判断是否只有一个连通分量。DFS比较迷,我自己也讲不明白,你们自己慢慢体会。
#include <iostream>
#include <algorithm>
using namespace std;
void dfs(int g[3][4],int i,int j){
g[i][j]=0;//标记已经访问
if(i-1>=0&&g[i-1][j]==1)dfs(g,i-1,j);
if(i+1<=2&&g[i+1][j]==1)dfs(g,i+1,j);
if(j-1>=0&&g[i][j-1]==1)dfs(g,i,j-1);
if(j+1<=3&&g[i][j+1]==1)dfs(g,i,j+1);
}
int main(){
int a[12]={0,0,0,0,0,0,0,1,1,1,1,1};
int ans=0;
do{
int g[3][4];
for(int i=0;i<3;i++){
for(int j=0;j<4;j++){
if(a[i*4+j]==1){
g[i][j]=1;
}else{
g[i][j]=0;
}
}
}
//g中有五个格子被标记为1,现在用DFS做连通性检查
int cnt=0;
for(int i=0;i<3;i++){
for(int j=0;j<4;j++){
if(g[i][j]==1){
dfs(g,i,j);
cnt++;
}
}
}
if(cnt==1){
ans++;
}
}while(next_permutation(a,a+12));
cout<<ans<<endl;
}