蓝桥杯16年B组真题——剪邮票

【问题描述】

剪邮票

如【图1.jpg】, 有12张连在一起的12生肖的邮票。
现在你要从中剪下5张来,要求必须是连着的。
(仅仅连接一个角不算相连)
比如,【图2.jpg】,【图3.jpg】中,粉红色所示部分就是合格的剪取。

请你计算,一共有多少种不同的剪取方法。

请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。

【问题分析】

刚拿到题目时,第一个感觉就是用DFS,从某一个点出发,利用DFS计算从该点出发走满五个格子的情况数,再将所以情况相加即可得到结果。但是!!!!!!如果DFS的话,无法同时向下或者向右走,也就是每次只能向一个方向走。

我们换一个思路吧!!!就是先在12个格子中选五个,再去判断这五个是否连通。因为数据规模比较小,所以这是完完全全可行的!!!!

现在我们就来分别解决这些问题

问题一:12个中选五个,用0表示不选,1表示选择,对7个0和5个1的所有组合情况,那么每一种组合情况,就能代表在图中选择的邮票情况。可以自己写组合的函数,也可以直接调用next_permutation(),后者当然更加方便,本文中也是直接调用next——permutation()来实现12个选5的操作的

问题二:判断选中的5张邮票是否连通。用DFS来判断是否只有一个连通分量。DFS比较迷,我自己也讲不明白,你们自己慢慢体会。

#include <iostream>
#include <algorithm>
using namespace std;


void dfs(int g[3][4],int i,int j){
	g[i][j]=0;//标记已经访问
	if(i-1>=0&&g[i-1][j]==1)dfs(g,i-1,j);
	if(i+1<=2&&g[i+1][j]==1)dfs(g,i+1,j); 
	if(j-1>=0&&g[i][j-1]==1)dfs(g,i,j-1);
	if(j+1<=3&&g[i][j+1]==1)dfs(g,i,j+1);
}
int main(){
	int a[12]={0,0,0,0,0,0,0,1,1,1,1,1};
	int ans=0;
	do{
		int g[3][4];
		for(int i=0;i<3;i++){
			for(int j=0;j<4;j++){
				if(a[i*4+j]==1){
					g[i][j]=1;
				}else{
					g[i][j]=0;
				}
			}
		}
		//g中有五个格子被标记为1,现在用DFS做连通性检查
		int cnt=0;
		for(int i=0;i<3;i++){
			for(int j=0;j<4;j++){
				if(g[i][j]==1){
					dfs(g,i,j);
					cnt++;
				} 
			}
		} 
		if(cnt==1){
			ans++;
		}
	}while(next_permutation(a,a+12));
	cout<<ans<<endl;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值