题目
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n)
的算法。
示例 1:
输入: nums = [1,3,5,6], target = 5 输出: 2
示例 2:
输入: nums = [1,3,5,6], target = 2 输出: 1
示例 3:
输入: nums = [1,3,5,6], target = 7 输出: 4
提示:
1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums
为 无重复元素 的 升序 排列数组-104 <= target <= 104
# 思路
> 这道题可以使用二分查找算法来解决,时间复杂度为 O(log n)。
>初始化左指针 left 为 0,右指针 right 为数组长度减 1。
在循环中,当左指针小于等于右指针时,执行以下操作:
计算中间位置的索引 mid,方法是将右指针减去左指针的差值除以 2,再加上左指针。
比较中间位置的值 nums[mid] 和目标值 target:
如果 nums[mid] 等于 target,说明找到了目标值,返回 mid。
如果 nums[mid] 小于 target,说明目标值在右半部分,更新左指针为 mid + 1。
如果 nums[mid] 大于 target,说明目标值在左半部分,更新右指针为 mid - 1。
如果循环结束仍然没有找到目标值,则返回左指针 left,它表示目标值应该插入的位置。
# 解题方法
> 在思路中
# 复杂度
- 时间复杂度:
> $O(log n)$
- 空间复杂度:
> $O(1)$
c++代码
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int left = 0, right = nums.size() - 1; // 定义左右指针,数组下标从0开始,因此右指针要减一
while (left <= right) { // 当左指针不大于右指针时,继续循环
int mid = ((right - left) / 2 + left); // 计算中间位置的下标
if (nums[mid] < target) { // 如果中间值小于目标值,说明目标值在右半部分
left = mid + 1; // 更新左指针为中间位置的下一位
} else {
right = mid - 1; // 否则,更新右指针为中间位置的前一位
}
}
return left; // 最后返回左指针所在的位置
}
};
# Code
```C++ []
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int left = 0, right = nums.size() - 1; // 定义左右指针,数组下标从0开始,因此右指针要减一
while (left <= right) { // 当左指针不大于右指针时,继续循环
int mid = ((right - left) / 2 + left); // 计算中间位置的下标
if (nums[mid] < target) { // 如果中间值小于目标值,说明目标值在右半部分
left = mid + 1; // 更新左指针为中间位置的下一位
} else {
right = mid - 1; // 否则,更新右指针为中间位置的前一位
}
}
return left; // 最后返回左指针所在的位置
}
};
```