题目
中等
相关标签
找出所有相加之和为 n
的 k
个数的组合,且满足下列条件:
- 只使用数字1到9
- 每个数字 最多使用一次
返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。
示例 1:
输入: k = 3, n = 7 输出: [[1,2,4]] 解释: 1 + 2 + 4 = 7 没有其他符合的组合了。
示例 2:
输入: k = 3, n = 9 输出: [[1,2,6], [1,3,5], [2,3,4]] 解释: 1 + 2 + 6 = 9 1 + 3 + 5 = 9 2 + 3 + 4 = 9 没有其他符合的组合了。
示例 3:
输入: k = 4, n = 1 输出: [] 解释: 不存在有效的组合。 在[1,9]范围内使用4个不同的数字,我们可以得到的最小和是1+2+3+4 = 10,因为10 > 1,没有有效的组合。
提示:
2 <= k <= 9
1 <= n <= 60
思路和解题方法
- 在
backtracking()
方法中,首先进行终止条件的判断。如果当前组合的数字之和超过目标和targetSum
,直接返回。如果当前组合的大小等于k
,说明已经选取了足够数量的数字,如果当前组合的数字之和等于目标和,将当前组合加入到结果数组result
中,并返回。- 然后,使用一个循环从
startIndex
到9 - (k - path.size()) + 1
进行遍历。因为需要从 1~9 中选取数字,所以终止位置不可超过 9。根据题目要求,输入的 k,n 满足 1 ≤ k ≤ 9 且 1 ≤ n ≤ 45,因此最多只需要从 9-K+1 遍历到 9。- 在循环内部,首先将当前数字加入到当前组合中,并将数字之和累加,然后通过递归调用
backtracking()
函数,在从i+1
到 9 的范围内选择下一个数字。递归调用完成后,需要进行回溯操作,即将上一步加入组合的数字移出当前组合,并将数字之和减去该数字。这段代码同上一题的解法。- 最后,在主函数
combinationSum3()
中,清空存储结果的数组result
和存储组合的数组path
,并调用backtracking()
方法开始生成所有符合条件的组合。最后返回所有符合条件的组合数组result
。
复杂度
时间复杂度:
O(9^k)
时间复杂度:回溯算法的时间复杂度一般会被描述为指数级别,因为回溯问题一般有多个决策点和多个选择分支,例如本题中的组合问题就存在多个决策点(选取哪个数字)和多个选择分支(选取的数字不能重复且不能超过范围),因此它的时间复杂度在最坏情况下为 O(9^k),其中 k 表示组合的大小。需要注意的是,由于给定的 k 的范围为 1 ≤ k ≤ 9,因此实际运行效率比 O(9^k) 要好。
空间复杂度
O(k)
空间复杂度:回溯算法的空间复杂度也一般都很高,因为需要使用递归栈来保存状态和结果,例如本题中需要用递归栈来保存当前处理的数字、当前组合的大小、数字之和和结果集等信息,其空间复杂度也为指数级别,最坏情况下为 O(k),其中 k 表示组合的大小。
c++ 优化代码
class Solution {
private:
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
// 回溯函数
void backtracking(int targetSum, int k, int sum, int startIndex) {
if (sum > targetSum) { // 剪枝操作
return;
}
if (path.size() == k) { // 如果当前组合的大小等于 k,说明已经选取了足够数量的数字
if (sum == targetSum) result.push_back(path); // 如果当前组合的数字之和等于目标和,将当前组合加入到结果数组中
return; // 返回
}
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 遍历可选的节点
sum += i; // 处理节点,将当前的数字加入到当前组合中,并将数字之和累加
path.push_back(i); // 处理节点,将当前的数字加入到当前组合中
backtracking(targetSum, k, sum, i + 1); // 递归调用,从 i+1 到 9 的范围内选择下一个数字
sum -= i; // 回溯,撤销处理的节点,将上一步加入的数字从数字之和中减去
path.pop_back(); // 回溯,撤销处理的节点,将上一步加入的数字移出当前组合
}
}
public:
vector<vector<int>> combinationSum3(int k, int n) {
result.clear(); // 可以不加,清空之前可能存在的结果集
path.clear(); // 可以不加,清空之前可能存在的组合
backtracking(n, k, 0, 1); // 从 1 开始进行回溯
return result; // 返回符合条件的所有组合
}
};
觉得有用的话可以点点赞,支持一下。
如果愿意的话关注一下。会对你有更多的帮助。
每天都会不定时更新哦 >人< 。