数学奇才:塞尔伯格

本文讲述了挪威数学家塞尔伯格在二战期间的孤立环境中,对黎曼ζ函数和筛法做出的重大贡献。他发展了Viggo Brun的筛法,证明了临界线定理,揭示黎曼ζ函数非平凡零点在临界线上占比大于零,为黎曼猜想的研究迈出重要一步。塞尔伯格的独立研究风格和对数学的深刻洞察,使他在数学史上留下了独特印记。
摘要由CSDN通过智能技术生成

前言

前两天观看张益唐的在线直播,其中提到塞尔伯格的名字,他是筛法的发扬光大者,于是又翻开典籍,重温了一下这位数学史上的奇才。

塞尔伯格的故事

Atle Selberg出生在寒冷的北欧国家挪威。年少的时侯他常常一个人独自静坐在他父亲的私人图书室里阅读数学书World of Mathematics 数学烟云情形对于我的研究来说有许多有利的方面”。这个道理虽然浅显,但真正能忍受这种孤立的环境,并善加利用的人却是少之又少,塞尔伯格是其中之一。战 争 结 束 后 的 1946 年, 塞 尔 伯 格 应 邀 出 席 在丹麦首都哥本哈根举行的斯堪的纳维亚数学家大会(Scandinavian Congress of Mathematicians),并做了报告,向数学界介绍他在战争期间所做的工作。这其中最重要的就是我们将在下节中介绍的他在黎曼猜想方面的成就。在那段战火纷飞、纳粹横行的黑暗岁月里,欧洲的数学界几乎分崩离析,数学家们走的走,散的散,下岗的下岗、参战的参战,真正留在本土从事研究且作出重大贡献的人很少,以至于玻尔(Harald Bohr)曾对来访的美国同行戏称说战时整个欧洲的数学新闻可以归结为一个词,那就是塞尔伯格!塞尔伯格的卓越贡献一经曝光很快引起了著名的美国“猎头公司”普林斯顿高等研究所的注意。普林斯顿高等研究所我们曾在第 17 节中提到过。与那些每一条林荫道、每一间咖啡屋都散发着悠远历史的欧洲学术之都相比,创建于 1930 年的高等研究所显得十分年轻。但它却在极短的时间内声誉鹊籍。那段经历与他后来近乎孤立的研究风格遥相呼起,成为了世界级的学术中心。这一崛起在很大程应。就在那时,他接触到了有关印度数学奇才拉马努金的故事。那些故事,以及拉马努金的那些有如神来之笔的奇妙公式深深地吸引了他。随着阅读的深入,塞尔伯格自己的数学天赋也渐渐显现了出来。在二十岁那年,他已经可以对哈代与拉马努金的一个著名的公式作出改进 [ 注 25.1]。遗憾的是,同样的结果在一年之前已经由德国数学家 Hans Rademacher(1892-1969)做出并发表了。在二战期间,欧洲的许多科学家被迫离开了家园,整个欧洲的科学界变得沉寂凋零。但塞尔伯格仍然留在了挪威,在奥斯陆大学(University of Oslo) 独自从事数学研究。随着战事的深入,学校里不仅人越来越少,到后来连外界的学术期刊也无法送达了。塞尔伯格与数学界的交流彻底地中断了。但这种在常人看来十分可怕的孤立,在塞尔伯格眼里却有一种全然不同的感觉。他后来回忆当时的情形时说:“这就像处在一座监狱里,你与世隔绝了,但你显然有机会把注意力集中在自己的想法上,而不会因其他人的所作所为而分心,从这个意义上讲我觉得那种度上得益于它在二战期间吸引了从欧洲来到美国的许多第一流的学者,这其中包括像爱因斯坦(Albert Einstein, 1879-1955) 与 哥 德 尔(Kurt Gödel, 1906-1978)这样的绝世高手。战争结束后,在高等研究所任教的赫尔曼 • 外尔(Hermann Weyl, 1885-1955)向塞尔伯格发出了邀请。外尔本人就是被普林斯顿高等研究所“猎取”的来自欧洲的顶尖数学家,他曾是希尔伯特在哥廷根大学的继任者,但外尔的妻子是犹太人,这使他们在德国难以立足。塞尔伯格接受了外尔的邀请,于 1947 年来到高等研究所,1949年成为正式成员。1950 年,塞尔伯格因其在黎曼猜想及其它领域的杰出贡献,与法国数学家洛朗 • 施瓦茨(Laurent Schwartz , 1915-2002) 共同获得了数学界的最高奖 :菲尔兹奖。菲 尔 兹 奖 委 员 会 对 塞 尔 伯 格 获 奖 贡 献 的 描 述是 : 发 展 推 广 了 Viggo Brun 的 筛 法(The Sieve Methods);获得了有关黎曼 ζ 函数零点的重要结果 ;(与保罗 • 埃尔德什一起)给出了一个素数定理的初等证明,以及对任意算术序列中素数研究的推广。数学文化/第2卷第4期 41World of Mathematics 数学烟 云Riemann普林斯顿高等研究所是学术交流与合作的天堂,这一工作思虑周详,推理严谨,几乎没有留下任何空它与战时奥斯陆大学的与世隔绝有着天壤之别。但隙让别人去填补。他们所用的方法已经被推到了极致,塞尔伯格的研究风格并没有因环境而变化,他一如既往地走着一条孤立研究的道路 [ 注 25.2],并且和当年的高斯一样,他有许多工作没有发表。年轻的时候,他的孤立使他未能及早发现 Rademacher 已经发表的文章,以至于重复了后者的工作。如今,在他的声誉如日中天时,他的孤立却让其他数学家的心里忐忑了起来,担心自己辛苦劳作的结果是在重复塞尔伯格早已完成的工作。在塞尔伯格落户普林斯顿二十几年后的一天,正是这种担忧让年轻的蒙特哥麦利踏上了普林斯顿之旅,从而有了我们在第 17节中叙述过的那个数学与物理交汇的动人故事。26临界线定理对于我们这个系列来说,在塞尔伯格的工作中最重要的,显然是他有关黎曼 ζ 函数非平凡零点的研究。他的这一研究是在二战期间进行的。出于对拉马努金的兴趣,塞尔伯格对剑桥大学的“三剑客”:拉马努金、哈代、及李特尔伍德的工作进行了深入的研究。其中哈代与李特尔伍德所证明的有关黎曼 ζ 函数非平凡零点分布的哈代 - 李特尔伍德定理引起了他极大的兴趣。哈代 - 李特尔伍德定理是一个非常精彩的定理,但它的结果却太弱,因为——如我们在第 24 节中所说——它所能确立的位于 critical line 上的零点数目相对于零点总数来说,其渐近比例等于零。塞尔伯格想要做的是改进这一结果。哈代与李特尔伍德都是英国顶尖的数学家,虽然他们的结果距离解决黎曼猜想还非常遥远,但他们的注 25.2塞尔伯格一生只有一篇论文是与人合作的,合作者是我们在第十七节中提到的那位促成了蒙特哥麦利与戴森会面的印度数学家周拉(周拉的交际能力之强由此可见一斑)。除此之外,即使在菲尔兹奖委员会提到的他与埃尔德什一起得到的素数定理的初等证明中,他也不曾与埃尔德什合写论文 ( 这件事情后来还不幸演变成他与埃尔德什之间一段很不愉快的经历,这是题外话 )。数学文化/第2卷第4期 42这一点哈代与李特尔伍德自己也很清楚,在论文中他们明确表示用这一方法已经难以取得进一步的结果。因此,要想改进哈代与李特尔伍德的结果,就必须突破他们所用的方法。我们知道(详见第 23、24节),在哈代与李特尔伍德所用的方法中很关键的部分就是对 2ξ(s)xs/s(s-1) 的积分进行研究。哈代最初 研 究 的 是 2ξ(s)xs/s(s-1) 在 (1/2-i∞, 1/2+i∞) 的 积分,而在哈代与李特尔伍德的合作研究中,为了得到critical line 上零点分布的细致结果,这一积分范围被细化成了 critical line 上的任意区间 (s-ik, s+ik),其中 Re(s)=1/2。从积分区间的角度讲,这一推广已经达到了极致。那么想要突破哈代与李特尔伍德的方法,该从哪里下手呢?塞尔伯格把目光盯在了被积函数上。塞尔伯格发现,如果我们用一个适当的函数对哈代与李特尔伍德所用的被积函数 2ξ(s)xs/s(s-1) 进行“调制”,就有可能使对其积分的研究变得更为精准。为此他把自己的注意力放在一个更普遍的积分 :I(x, s, k) =12πis+ik∫s−ik2ξ(z)z(z − 1)ϕ(z)ϕ*(z)x z−1dz上。这个积分与哈代与李特尔伍德所用的积分相比多了一个被积因子 φ(z)φ*(z),这个因子就是塞尔伯格引进的调制函数。那么什么样的调制函数比较有利于对这个积分进行研究呢?塞尔伯格认为应该选一个能够对 ξ(z) 在零点附近的行为进行某种控制的函数。这种函数的一个比较容易想到的选择是 φ(z)=[ζ(z)]–1/2。由于 ζ(z)与 ξ(z) 具有同样的零点,因此用这个调制函数可以完全消去 ξ(z) 的零点。但这个选择有一个不利之处,那就是它在 z=1 处具有奇异性。为了避免这一奇异性对 φ(z) 的解析延拓造成麻烦,塞尔伯格对 [ζ(z)]–1/2的 展 开 式 [ζ(z)]–1/2 = Σαnn–z 进 行 了 截 断 处 理, 他 引进了一个新的级数 φ(z)=Σβnn–z。这个新级数的系数βn 在 n 小于等于某个大数 N 的时侯定义为 [1-ln(n)/ln(N)]αn, 而 在 n>N 时 则 为 零。 这 样 φ(z) 至 多 只 有N+1 项,是一个有限级数,从而对所有的 z 都解析。另一方面,在 N 很大时它是对 [ζ(z)]–1/2 的近似,因此通过对 N 进行调节,塞尔伯格可以对 ζ(z) 在零点World of Mathematics 数学烟云Riemann附近的行为进行某种控制。这一调制函数果然不负厚望,通过它的辅助,塞尔伯格经过复杂的计算与推理,终于证明了一个比哈代 - 李特尔伍德定理强得多的结果。这个结果被称为临界线定理(Critical line Theorem):27Levinson 方法塞尔伯格的临界线定理表明 critical line 上的非平凡零点所占比例大于零。那么这个比例究竟是多少临界线定理 : 存在常数 K>0 及 T0>0,使得对所有 T>T0,黎曼 ζ 函数在 critical line 上 0≤Im(s)≤T 的区间内的非平凡零点数目不小于 KTln(T)。有的读者可能会问 :这个定理为什么不叫做塞呢?塞尔伯格在论文中没有给出具体的数值。据说他曾经计算过这一比例,得到的结果是 5%-10%[ 注 27.1]。另外,中国数学家闵嗣鹤(1913-1973)在牛津大学留学(1945-1947)时曾在博士论文中计算过这一比例,得到了一个很小的数值。这些结果或是太小,或是没尔伯格定理?那是因为“塞尔伯格定理”这一名称有公开发表,在数学界鲜有反响。总的来说,塞尔伯已经名花有主了。不过即便如此,人们有时也的确仍把临界线定理称为塞尔伯格定理。塞尔伯格得到这一结果是在 1942 年,当时欧洲的战火仍在燃烧,奥斯陆大学仍处于与世隔绝之中。外界的数学家们固然大都不知道他的这一重大结果,塞尔伯格本人也不确定自己是否又会像当年改进哈代与拉马努金的工作那样重复别人已经完成的东西。战争一结束,当他听说邻近的特隆赫姆理工学院(Institute of Technology in Trondheim)已经收到了在战争期间无法送达的数学杂志,就专程前往,花了一星期的时间查阅文献。这一次他没有失望,二十一年来数学界对黎曼 ζ 函数非平凡零点的解析研究基本上仍停留在哈代 - 李特尔伍德定理的水平上,孤独的塞尔伯格远远地走到了时代的前面。那 么 塞 尔 伯 格 的 这 一 临 界 线 定 理 究 竟 强 到 什么 程 度 呢, 让 我 们 再 回 忆 一 下 在 第 5 节 中 提 到,并 在 后 面 章 节 中 屡 次 被 引 述 的 黎 曼 的 三 个 命 题中 的 第 一 个( 也 是 唯 一 一 个 被 证 明 的 )命 题 :在 0<Im(s)<T 的区间内(不限于 critical line 上),黎曼 ζ 函 数 的 零 点 总 数 大 约 为 (T/2π)ln(T/2π) - (T/2π)。 将 这 个 结 果 与 塞 尔 伯 格 的 临 界 线 定 理 相比 较, 显 然 可 以 看 到( 请 读 者 自 行 证 明 ):临 界 线定理表明黎曼 ζ 函数在 critical line 上的零点在全部 非 平 凡 零 点 中 所 占 的 比 例 大 于 零! 就 这 样, 从玻尔、兰道到哈代、李特尔伍德,再到塞尔伯格,经 过 一 系 列 艰 辛 的 解 析 研 究, 数 学 家 们 所 确 定 的位 于 critical line 上 的 零 点 数 目 终 于 超 过 了 0%,达 到 了 一 个“ 看 得 见 ” 的 比 例, 这 在 黎 曼 猜 想 的研究中是一个重要的里程碑。格的结果更多地是被视为一种定性的结果 :即首次证明了位于 critical line 上的零点占全体非平凡零点的比例大于零。有关这一比例的具体计算时隔二十多年才有了突 破 性 的 进 展。 这 一 进 展 是 由 美 国 数 学 家 列 文 森 (Norman Levinson, 1912-1975) 做出的。列文森小时候家境非常贫寒,父亲是鞋厂工人,母亲目不识丁且没有工作,但他在十七岁那年成功考入了著名的高等学府麻省理工学院(MIT)。在麻省理工的前五年,列文森在电子工程系就读,但他选修了几乎所有的数学系研究生课程,并得到著名数学家诺伯特 • 维纳(Norbert Wiener, 1894-1964)的赏识。1934 年列文森转入数学系,这时他的水平已完全具备了数学博士的资格。于是维纳帮他申请了一笔奖学金,让他去哈代所在的剑桥大学访问一年。次年列文森返回麻省理工,立即拿到了博士学位。列文森在学术生涯的早期先后经历了美国的经济大萧条及麦卡锡主义(McCarthyism)的盛行,几次面临放弃学术研究的境况,但最终还是幸运地度过了难关。列文森在傅里叶变换、复分析、调和分析、随机分析、非线性微分及积分方程等领域都做出过杰出的贡献。他二十八岁时就在美国数学学会出版了有关傅里叶变换的专著,这通常是资深数学家才有机会获得的殊荣 ;他在非线性微分方程领域的工作于 1953 年注 27.1也有说是 1% 左右。这种比例指的都是下界,5%-10% 指的是至少有 5%-10% 的非平凡零点在 critical line 上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北极象

如果觉得对您有帮助,鼓励一下

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值