前言
数学是一个基本工具,微积分是这个基本工具的基础工具。本文记录笔者学习微积分中的主要心得,融合网上精华材料,以及自身的梳理总结。会不断完善之。
学习微积分也是一个先由薄到厚,再由厚到薄的过程。数学就是统一的, 应该让学生有一个统一的认识。当你把大学数学主要分支学完,就会产生这种体会。华罗庚当年搞一条龙教学,就是伟大的尝试。可惜现在许多大学还是割裂地教学,误人不浅,当然很多教师也是有心无力。
学习数学的数理观点
微积分的基本观点
多重积分的体积元素应有正负定向是大数学家Poincaré于19世纪末指出的,这一看似平凡的看法使得多元微积分产生了根本性的变革。
由微分的外乘积乘上函数组成的微分形式,称为外微分形式。
一次外微分形式,二次外微分形式,三次外微分形式的定义,分别对应于线积分、面积分、体积分。
Poincaré引理:若ω为一外微分形式,其微分形式的系数具有二阶连续偏导数,则ddω=0;
还可以有:
Poincaré引理之逆:若ω是一个p次外微分形式,且dω=0,则存在一个p-1次外微分形式α,使得ω=dα。
Stokes公式是微积分这门学科的一个顶峰,它使微积分从古典走向现代,是数学中少有的简洁、美丽而深刻的定理之一。
微积分知识体系
上述基础性课程体系:《数学分析Ⅰ》,《数学分析Ⅱ》以及《经典力学数学名著选讲(有关微积分的深化)》基本实现了基于有限维Euclid空间上微积分延拓至赋范线性空间上微分学、有限维Euclid空间中流形上微积分基础的进程,亦包括对有限维Euclid空间上微分学与积分学的深化——藉此,上述三门递进性课程就微积分研究的广度与深度可类比Zorich(卓里奇)著《数学分析》的程度。
微积分与外延
参考文献
- 复旦大学精品课程
- 《重温微积分_齐民友》高等教育出版社
- 《微积分五讲_龚昇》
- 《简明微积分(第四版龚昇)》