重温微积分

本文探讨了微积分的基础观点,如Poincaré关于体积元素的正负定向思想,以及微分形式和Poincaré引理的重要性。文章强调了学习微积分的过程,并介绍了数学分析和流形上的微积分概念,包括Stokes公式在现代数学中的关键地位。同时,提到了复旦大学的相关教材和资源作为参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

数学是一个基本工具,微积分是这个基本工具的基础工具。本文记录笔者学习微积分中的主要心得,融合网上精华材料,以及自身的梳理总结。会不断完善之。

学习微积分也是一个先由薄到厚,再由厚到薄的过程。数学就是统一的, 应该让学生有一个统一的认识。当你把大学数学主要分支学完,就会产生这种体会。华罗庚当年搞一条龙教学,就是伟大的尝试。可惜现在许多大学还是割裂地教学,误人不浅,当然很多教师也是有心无力。

学习数学的数理观点

在这里插入图片描述

微积分的基本观点

多重积分的体积元素应有正负定向是大数学家Poincaré于19世纪末指出的,这一看似平凡的看法使得多元微积分产生了根本性的变革。

由微分的外乘积乘上函数组成的微分形式,称为外微分形式。
一次外微分形式,二次外微分形式,三次外微分形式的定义,分别对应于线积分、面积分、体积分。

Poincaré引理:若ω为一外微分形式,其微分形式的系数具有二阶连续偏导数,则ddω=0;
还可以有:
Poincaré引理之逆:若ω是一个p次外微分形式,且dω=0,则存在一个p-1次外微分形式α,使得ω=dα。

Stokes公式是微积分这门学科的一个顶峰,它使微积分从古典走向现代,是数学中少有的简洁、美丽而深刻的定理之一。

微积分知识体系


上述基础性课程体系:《数学分析Ⅰ》,《数学分析Ⅱ》以及《经典力学数学名著选讲(有关微积分的深化)》基本实现了基于有限维Euclid空间上微积分延拓至赋范线性空间上微分学、有限维Euclid空间中流形上微积分基础的进程,亦包括对有限维Euclid空间上微分学与积分学的深化——藉此,上述三门递进性课程就微积分研究的广度与深度可类比Zorich(卓里奇)著《数学分析》的程度。

在这里插入图片描述

微积分与外延

在这里插入图片描述

在这里插入图片描述

参考文献

  • 复旦大学精品课程
  • 《重温微积分_齐民友》高等教育出版社
  • 《微积分五讲_龚昇》
  • 《简明微积分(第四版龚昇)》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北极象

如果觉得对您有帮助,鼓励一下

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值