杨辉三角性质总结

杨辉三角

1.定义:百度百科_杨辉三角

ps:其中的有几个性质特别有意思

2.我们可以利用杨辉三角的一些简单知识来解决问题

如下问题:

题目描述

写出一个11至NN的排列a_iai​,然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直到只剩下一个数字位置。下面是一个例子:

3,1,2,4

4,3,6

7,9

16

最后得到16这样一个数字。

现在想要倒着玩这样一个游戏,如果知道N,知道最后得到的数字的大小sum,请你求出最初序列a​,为1至N的一个排列。若答案有多种可能,则输出字典序最小的那一个。

输入输出格式

输入格式:

两个正整数n,sum。

输出格式:

输出包括1行,为字典序最小的那个答案。

1.分析:

对于这个问题:我们先看n的序列。

如果所这一行的n个数是a,b,c....(n个)

如果说n是4,那么sum=a+3b+3c+d。

如果说n是5,那么sum=a+4b+6c+4d+e。

{我看了题解才发现的问题,orz!原来是这样子。我们可以利用搜索对数字进行组合}

状态转移方程: C(r,n)=(n-r+1)*C(r,n-1)/r; 组合数

2.题解如下所示:(洛谷中借鉴的)

#include<iostream>
#include <cstdio>
#include <cstring>
#include <set>
using namespace std;
int ha[100],flag,yh[13][13];
bool v[100];
int n,sum;

void print() {
	for(int i = 1;i <= n;i++)
		printf("%d ",ha[i]);	
}

void dfs(int step,int ans) {
	if(ans>sum||flag) return ;
	if(step==n+1&&ans==sum) {
		print();
		flag = 1;
		return ;
	}
	for(int i = 1;i <= n;i++) {
		if(!v[i]) {
			ha[step] = i;
			v[i] = 1;
			dfs(step+1,ans+i*yh[n][step]);
			v[i] = 0;
		}
	}
}

int main()
{
	cin >> n >> sum;
	yh[1][1] = 1;
	for(int i = 2;i <= n;i++)
		for(int j = 1;j <= i;j++)
			yh[i][j] = yh[i-1][j-1] + yh[i-1][j];

	dfs(1,0);
	return 0;
}

简单粗暴的暴力搜索代码,可以把是个数据全部AC。

解释一下代码:

1.ha数组代表了记录数字的排列顺序

2.我们可以能简单地对第一个满足条件的数字组合进行输出,这就是字典序输出的最小值

3.ans+i*yh[n][step] 表示前i+1个数字的最大数值

4.在主函数里面,用两个for循环对yh进行一个杨辉三角的规律输入

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值