KMP算法

http://blog.csdn.net/joylnwang/article/details/6778316


KMP算法详解


模式匹配算法,可以在线性时间内完成匹配查找,而且不会发生退化


http://kb.cnblogs.com/page/176818/


上面这篇文章的介绍浅显易懂,如果只是理解思想的话,读上面的文章会是一个好选择。需要注意的是,文中的部分匹配值的求法感觉有问题。


这里我们引入一个概念f(j),其含义是,对于模式串的第j个字符pattern[j],f(j)是所有满足使pattern[1...k-1] = pattern[j-(k-1)...j - 1]

(1<k < j)成立的k的最大值。若没有,则 k = 1;

f(1) = 0 ,  f(2) = 1,默认。


亦即将 第N(n>2)个字符前的绝对前缀与绝对后缀比较,得到的最大的K即pattern值。

对ABCDABD字符串,

以第四个字符 D 为例:

  D前面有三个字符 ABC,  k -1取值 1~(J-2);  

   K-1   前缀   关系   后缀

    1     A              !=                  C

    2     AB   !=                  BC

没有,则取默认值K = 1;

next[j] 取法如下:

如果 pattern[j] != pattern[f(j)],next[j] = f(j);

如果 pattern[j] = pattern[f(j)],next[j] = next[f(j)]

以原文中  ABCDABD为例:

pattern     A  B  C  D  A  B  D

j            1      2      3     4      5     6      7

next(j)     0      1      1     1      0     1     3 

f(j)           0       1     1     1      1     2      3


如此,得出next  值,这里可能比较绕,但逻辑搞清楚就行了,然后,下次直接从 next[n] 处开始匹配就行了,也就是串向后移动了  N - next[N] 位。以上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值