后缀式表示法是波兰逻辑学家卢卡西维奇(Lukasiewicz)发明的一种表示表达式的方法因此又称逆波兰表示法。这种表示法是把运算量(操作数)写在前面把算符写在后面(后缀)。例如把a+b写成ab十把a*b写成ab*。
一个表达式E的后缀形式可以如下定义:
(1)如果E是一个变量或常量,则E的后缀式是E自身。
(2)如果E是E1 Op E2形式的表达式,这里op是任何二元操作符,则E的后缀式为E1’ E2’op,这里E1’和E2’分别为E1和E2的后缀式。
(3)如果E是(E1)形式的表达式,则El的后缀式就是E的后缀式。
ab十cd+*所代表的表达式是(a+b)*(c+d)
一个表达式E的后缀形式可以如下定义:
(1)如果E是一个变量或常量,则E的后缀式是E自身。
(2)如果E是E1 Op E2形式的表达式,这里op是任何二元操作符,则E的后缀式为E1’ E2’op,这里E1’和E2’分别为E1和E2的后缀式。
(3)如果E是(E1)形式的表达式,则El的后缀式就是E的后缀式。
这种表示法用不着使用括号。例如,(a+b)*c将被表示成ab+c*。根据运算量和算符出现的先后位置,以及每个算符的目数,就完全决定了一个表达式的分解。
例如
abc+*所代表的表达式是 a*(b+c)ab十cd+*所代表的表达式是(a+b)*(c+d)