堆的概念和算法

文章介绍了满二叉树和完全二叉树的概念,强调了它们的区别。完全二叉树允许非满的最后一层,但节点从左到右连续。接着,文章讲解了最大堆和最小堆的定义,以及如何通过调整保持堆的性质。堆的增删操作以最小堆为例,包括添加、删除元素的步骤。最后提到了heapify方法用于构建最小堆。
摘要由CSDN通过智能技术生成

1.基本概念

1.1 满二叉树

  • 满二叉树是指的是除了最后一层外,其他节点都有两个孩子,而最后一层都是叶子节点。

1.2 完全二叉树

满二叉树是完全二叉树,但完全二叉树不要去最后一层是满的,完全二叉树要求所有节点从左到右连续,中间不能为空。

  • 完全二叉树 特征 ,给定任何一个节点,可以根据其编号,计算出其父节点和孩子节点的编号
    比如:如果编号为 i则父节点为i/2 左节点为2i 又节点为2i+1
    它使得逻辑上的二叉树可以存储到数组中
  • 扩展排序二叉树 是完全有序的,每个节点都有确定的前驱和后继,而且不能有重复的元素。与排序二叉树不同,在堆中可以有重复发元素,元素间不是完全有序的,但对父子之间,有一定的顺序要求 按照顺分为两种堆,一种是最大堆,一种是最小堆。

1.3 最大堆和最小堆

最大堆指的是每个节点都不大于其父节点。这样每个父节点,一定不小于其所孩子节点。树的根是最大的节点,对于每个子树,子树的根是最大的节点。最小堆正好相反。

堆的增删(以最小堆为例)

  • 添加元素 : (1) 添加元素到最后的位置
    (2)与父节点比较,若果大于父节点,则满足性质,结束。否则(向上调整)在于父节点比较和交换,直到父节点为空,或者大于等于父节点。
  • 从头部删除元素:在队列中一般是从 ,从头部删除元素,java 中用堆实现优先队列。
    步骤:(1)用最后一个元素替换头部的元素,并且删除掉最后一个元素;
    (2)将新的头部和两个孩子节点中较小的比较,如果不大于该节点,则满足堆的性质,结束,否则与较小的孩子节点进行交换,交换后,在于较小的孩子节点比较和交换,一直没有孩子节点,或者不大于两个孩子节点。这个过程叫做 向下调整。
  • 从中间删除元素
    与从头部删除元素医药,都是先用最后一个元素替换待删除的元素。不过替换后,有两种情况,如果该元素大于某孩子节点,则需要向下调整,如果小于小于父节点,则需要向上调整。
  • 构建初始堆
    给定一个无序的数组,将其转换为最小堆的过程称为 heapify.基本思路是,从最后一个非叶子节点开始,一直往前到根,每个节点执行向下调整。
//逻辑代码
void heapify(){
for(int i=size/2;i>=1;i--){
  siftdown()//向下调整
}
}
  • 查找和遍历
    在堆中进行查找没有特殊的算法,就是从数组的头找到尾,效率为O(N)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

利剑 -~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值